Supplemental information for "Fabrication of FTO-BiVO₄-W-WO₃ photoanode for

improving photoelectrochemical performance: based on the Z-scheme electron transfer

mechanism"

Ruiling Wang^a, Tian Xie^a, Tong Zhang^a, Taofei Pu^a, Yuyu Bu^{b*}, Jin-Ping Ao^{a,b*}

^aInstitute of Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan.

^bKey Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.

Experimental section

Preparation of BiVO₄-W-WO₃ photoanodes

All reagents used in this study were purchased from Sigma-Aldrich Corporation with analytical grade. The purity of gases (Ar, O_2 , SiCl₄) used in this experiment are higher than 99.999%. The photoanodes were fabricated as we just designed. Firstly, a layer of BiVO₄ is deposited on the surface of FTO by the electrochemically deposition method as previous reported [1]. Then W layer which was incompletely oxidized in Ar and O_2 mixed ambient environment (Ar: O_2 =15:50) was covered on the surface of BiVO₄ by magnetron sputtering. We adjusted sputtering time as 800, 1600, 2400, 3200, 4000, 4800 s with a power of 75 W to get the thickness of 50, 100, 150, 200, 250, 300 nm, respectively. Before reactive sputtering, the W target was cleaned by sputtering in an Ar ambient environment for 5 min with a power of 150 W. After rapid thermal annealing (RTA) process at 500°C, WO₃ layer is generated through in-situ oxidation of W layer. The RTA time are 30, 60, 120 min respectively to optimize the PEC performance of the system.

Characterization

The crystalline structures of the thin-films were identified through X-ray diffraction (XRD) (D/MAX-2500/PC; Rigaku Co., Tokyo, Japan). The morphologies of the prepared WO₃ nanoflower structured thin-film photoelectrodes were investigated using scanning electron microscope (SEM) (F250, FEI Company, USA), field emission high-resolution transmission electron microscope (FE-HRTEM, Tecnai G2 F20, FEI Company, USA), and atomic force microscope (AFM, Dimension V, Veeco Instruments Inc. USA). The light absorption properties were investigated using a UV/Vis diffuse reflectance spectrophotometer (UV/Vis DRS, U-41000; HITACHI, Tokyo, Japan). The surface bonding information of the prepared photoanodes were analyzed using X-ray photoelectron spectroscopy (XPS, ULVAC-PHI 5000, Ulvac-Phi, Japan) equipped with a spherical capacitor analyzer and monochromatic Al K α radiation source (hv = 1486.6 eV) by different etching time.

Photoelectrochemical performance measurements

A three-electrode system was used to test the photoelectrochemical performance of these photoanodes. The photoanode served as the working electrode, a platinum electrode acted as the counter electrode and Ag/AgCl (saturated KCl) served as the reference electrode. The visible light (> 420 nm) with the intensity of 100 mW·cm⁻² was produced by a 300-W Xe lamp (PLS-SXE 300C, Beijing Perfect light) with a visible light filter. The illumination direction was always front illumination. The photoinduced linear sweep voltammetry I-V curves were measured from -0.2 V to 1.5 V (vs. Ag/AgCl) with a scan rate of 0.05 V·s⁻¹. The incident photon-to-current conversion efficiency (IPCE) of the prepared photoanodes were tested at the bias potential of 1.23 V (vs. Ag/AgCl) by a 300-W Xe lamp with a monochromator. The photocurrent stability of BiVO₄ and BiVO₄-W-WO₃ photoanodes was carried out under a 100 mW·cm⁻² visible light and 0.5 V (vs. Ag/AgCl) bias potential. All tests were carried out in 0.1 M Na₂SO₄ electrolyte (pH = 7) using the CHI660D electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd., Shanghai, China). The electrochemical impedance spectroscopy (EIS) was also carried out at a bias potential of 0 V under dark and 1.5 V under 100 mW/cm⁻²

Figure S1. Cross-section EDS mapping of BiVO₄-W-WO₃-3200.

Figure S2. Survey surface-XPS result of the BiVO₄-W-WO₃-3200.

spectroscopy results of BiVO₄ and BiVO₄-W-WO₃-3200-1h.

Table 51. At W100t mean squared foughness results of these photoanodes											
Sample	Raw	Mean	Ζ	Surface	Projected	Surface	Rq	Ra	Rmax	Skewness	Kurtsis
	Mean		Range	Area	Surface	Area					
					Area	Difference					
BiVO ₄	1391	1.70	432 nm	17.0 um ²	$12.8 \ \mu m^2$	33.2 %	56.9	44.3	433	0.292 nm	3.41 nm
	nm	nm					nm	nm	nm		
BiVO ₄ /W/WO ₃	138	- 1.56	316 nm	19.1 um ²	$15.8 \ \mu m^2$	20.5 %	47.6	38.0	311	-0.0613 nm	2.91 nm
	nm	nm					nm	nm	nm		

Table S1. AFM root mean squared roughness results of these photoanodes

Figure S4. Photo-induced I-V curve of W-WO₃ photoanode on FTO substrate.

Figure S5. Electrochemical impedance spectroscopy (EIS) results of BiVO₄, BiVO₄-W-WO₃-3200- 1h, BiVO₄-W-WO₃-3200- 2h (A) under dark and (B) visible light illumination.

Table S2. Co	omparison	of different	BiVO ₄ ai	nd WO ₃	based	photoanode s	vstems u	sed for sola	ar water s	plitting
										23

Photoanode material type	Onset	Current density at 1.23 V	Light source	Electrolyte	References
	potential	versus RHE			
Bilayer WO ₃ /BiVO ₄ film	0.2 V	2.1 mA cm ⁻²	100 mW cm ⁻²	0.5 M Na ₂ SO ₄	2
			Visible light	(pH = 7)	
WO ₃ /BiVO ₄ core/shell	0.6 V	3.1 mA cm ⁻²	100 mW cm ⁻²	0.5 M potassium	3
nanowire			AM 1.5G	phosphate solution	
				(pH = 8)	
WO ₃ /BiVO ₄ heterojunction	0.5 V	1.0 mA cm ⁻²	100 mW cm ⁻²	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	4
			AM 1.5G	(pH = 7)	
Yolk-shell-shaped	0.3 V	2.3 mA cm ⁻²	100 mW cm ⁻²	0.5 M Na ₂ SO ₄	5
WO ₃ /BiVO ₄ heterojunction			AM 1.5G		
3D WO ₃ /BiVO ₄ -Co-Pi	0.05 V	4.5 mA cm ⁻²	100 mW cm ⁻²	0.5 M Na ₂ SO ₄	6

inverse opal			AM 1.5G	(pH = 6.8)	
1D WO ₃ /BiVO ₄ /Co-Pi	0.2 V	3.8 mA cm ⁻²	100 mW cm ⁻²	0.1 M Na ₂ SO ₄	7
Heterojunction			AM 1.5G	(pH = 7)	
WO ₃ /BiVO ₄ +Co-Pi core-	- 0.5 V	6.72 mA cm ⁻²	100 mW cm ⁻²	potassium phosphate	8
shell nanostructure			AM 1.5G	solution	
				(pH = 7)	
WO3-NRs/BiVO4 modified	0.5 V	3.2 mA cm ⁻²	100 mW cm ⁻²	0.5 M Na ₂ SO ₄	9
with Co-Pi			AM 1.5G		
WO ₃ /BiVO ₄ /TiO ₂	0.1 V	4.2 mA cm ⁻²	100 mW cm ⁻²	0.1 M Na ₂ SO ₄	10
heterojunction			AM 1.5G		
BiVO ₄ /W/WO ₃ Z-Scheme	0.05 V	4.5 mA cm ⁻²	100 mW cm ⁻²	0.1 M Na ₂ SO ₄	This work
			Visible light	(pH = 7)	

Reference

- 1 T. W. Kim, K.S. Choi, Science, 2014, 343, 990.
- 2 M. G. Mali, H. Yoon, M. Kim, M.T. Swihart, S.S. Al-Deyab a, S.S. Yoon, *Appl. Phys. Lett.*, 2015, 106, 151603.
- 3 P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, X. Zheng, *Nano Lett.*, 2014, 14, 1099.
- 4 I. Grigioni, K.G. Stamplecoskie, E. Selli, P.V. Kamat, J. Phys. Chem. C, 2015, 119, 20792.
- 5 B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J.I. Kim, Y. Son, J.H. Park, J. Mater. Chem. A, 2018, 6, 2585.
- 6 H. Zhang, W. Zhou, Y. Yang, C. Cheng, small, 2017, 13, 1603840.
- 7 S. Y. Chae, H. Jung, H.S. Jeon, B.K. Min, Y.J. Hwang, O.S. Joo, J. Mater. Chem. A, 2014, 2, 11408.
- 8 Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, T. Kitamori, *Sci. Rep.*, 2015, **5**, 11141.
- 9 Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, T. Kitamori, *small*, 2014, **10**, 3692.
- 10 S. S. Kalanur, I. H. Yoo, J. Park, H. Seo, J. Mater. Chem. A, 2017, 5, 1455.