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Methods 

Materials. Fabric, sponge, nickel foam, zinc sheet, copper sheet, and SSM (2300 mesh size) 

were commercially available. Diesel was purchased from an adjacent gas station. 

1H,1H,2H,2H-Perfluorodecanethiol (97%) and n-octadecylthiol (96%) were obtained from 

Sigma-Aldrich and Acros Organics, respectively. The beetle was obtained from the Tengger 

Desert. Its back was observed on a field emission scanning electron microscope. 

 

Preparation of dual superlyophobic fabric and sponge. CuO nanoparticles were first 

fabricated. Typically, Cu(CH3CO2)2 (0.025 mol) and CH3COOH (0.05 mol) were dissolved in 

500 mL anhydrous ethanol. NaOH (0.1 mol) was added to the ethanol solution at 78 ºC under 

stirring. The reaction was conducted for 1 h, getting CuO nanoparticle suspensions. Next, 

commercial fabric and sponge were washed with ethanol and water. The cleaned fabric and 

sponge were immersed into the CuO nanoparticle suspensions for 5 min at room temperature 

followed by drying at 60 ºC and washing with water. The dip-coating procedure was repeated 

for three times. Afterward, the CuO-coated fabric and sponge were immersed into anhydrous 

ethanol containing 1H,1H,2H,2H-perfluorodecanethiol and n-octadecylthiol at different 

concentrations for 1 h at room temperature. The modified fabric and sponge were thoroughly 

washed with anhydrous ethanol to get rid of any residual thiol followed by drying at 60 ºC. 

 

Preparation of dual superlyophobic nickel foam and zinc sheet. Nickel foam and zinc 

sheet were immersed into 100 ml aqueous solution of 0.1 M CuCl2 and 1 M HCl for 5 s at 

room temperature. After washing with deionized water and drying at 60 ºC, the treated nickel 

foam and zinc sheet were immersed in 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol anhydrous 

ethanol solution for 1 h at room temperature. The prepared dual superlyophobic nickel foam 

and zinc sheet were washed with anhydrous ethanol followed by drying at 60 ºC. 

 

Preparation of dual superlyophobic copper sheet. Copper sheet was treated in 20 mL 

aqueous solution of 1 M CuCl2 and 1 M HCl for 1 h at 100 ºC. After washing with deionized 

water and drying at 60 ºC, the treated copper sheet was immersed in 0.2 mM 
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1H,1H,2H,2H-perfluorodecanethiol anhydrous ethanol solution for 1 h at room temperature. 

The prepared dual superlyophobic copper sheet was washed with anhydrous ethanol followed 

by drying at 60 ºC. 

 

Preparation of dual superlyophobic SSM. SSM was immersed in 2 M HCl aqueous 

solution to remove any surface oxide layer and then cleaned with deionize water. First, an 

electrochemical deposition method was adopted to coat metallic copper on the SSM surface. 

SSM, platinum sheet, and saturated calomel electrode were used as the working, counter, and 

reference electrodes, respectively. Metallic copper was grown under a constant current density 

of 0.1 mA cm
−2

 in 1 M CuSO4 and 0.1 M H2SO4 aqueous solution for 5400 s at room 

temperature. Next, the Cu-coated SSM was immersed in aqueous solution of 1 M NaOH and 

0.05 M K2S2O8 for 1 h at room temperature followed by calcination at 150 ºC for 30 min. 

Finally, the treated SSM was immersed in 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol 

anhydrous ethanol solution for 1 h at room temperature. The prepared dual superlyophobic 

SSM was washed with anhydrous ethanol followed by drying at 60 ºC. 

 

Oil-water separation. The dual superlyophobic fabric with large pore size was used to 

separate immiscible oil-water mixtures. The prepared fabric was fixed between two glass 

tubes that were placed vertically. The immiscible oil-water mixtures (50%, v/v) were poured 

onto the fabric surface that was only prewetted by water. Oil-in-water emulsions were 

prepared by mixing water and oil (hexane and toluene) at a volume ratio of 100:1 with 

addition of 0.1 g/L Tween 80 under sharp stirring. Water-in-oil emulsions were prepared by 

mixing water and oil (1,2-dichloroethane and chloroform) at a volume ratio of 1:100 with 

addition of 1 g/L Span 80 under sharp stirring. In addition, diesel-in-water and water-in-diesel 

emulsions were prepared by mixing water and diesel at a volume ratio of 100:1 and 1:100, 

respectively. All turbid emulsions were highly stable for 24 h. The dual superlyophobic SSM 

with small pore size was used to separate the prepared oil-in-water and water-in-oil emulsions 

under gravity. 
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Characterization. A digital camera (Sony, DSC-HX200) was used to take all optical 

photographs. The surface structures were observed on a field emission scanning electron 

microscope (JEOL, JSM-6701F). The samples were pre-treated by Au-sputtered specimens to 

increase surface conductivity. The measured accelerating voltage and current were 5 kV and 

10 μA, respectively. The element mapping images were got on a scanning electron 

microscope (JEOL, JSM-5600LV) by EDS analysis. The chemical compositions were further 

characterized by XPS (Thermo Scientific ESCALAB 250Xi), in which the binding energy of 

C 1s (284.8 eV) acted as the reference. XRD was performed on an Analytical X’Pert PRO 

diffract meter to investigate the crystal structures of samples. CAs were obtained on a 

JC20001 CA system (Zhongchen digital equipment Co., Ltd. Shanghai, China). Before 

measuring underwater oil CAs, the samples were prewetted by ethanol and then water. The 

average CA values were calculated by measuring the sample at five different positions. The 

volume of liquid droplets was about 5 μL. An OLYMPUS BX51 microscope was employed to 

record optical microscope images of emulsions. The organic contents in the collected water 

were analyzed by measuring COD according to U.S. Environmental Protection Agency 

method 8000 (HACH, DRB 200). A Karl Fischer titrator (Metrohm 831 KF, Switzerland) was 

used to detect the purities of the collected oils. The sizes of the feed emulsions were 

calculated by DLS analysis with a Zetasizer Nano ZS (Malvern 3600, U.K.). All 

measurements were repeated for 3−5 times and the results were reproducible with relative 

errors less than ±5%. 
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Figure S1. (a) Photograph of the beetle. (b) SEM and (c) the corresponding element mapping 

images of the beetle’s back. 

 

 

Figure S2. Photographs of original (a) and CuO-coated fabrics modified with 0.2 mM (b) and 

15 mM (c) 1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S3. SEM images of original fabric. 

 

 

Figure S4. θ*W and θ*OW of original fabric. 

 

 

Figure S5. θ*W and θ*OW of CuO-coated fabric. 

 



9 

 

 

Figure S6. θ*W and θ*OW of CuO-coated fabrics modified with 0.1 mM 

1H,1H,2H,2H-perfluorodecanethiol (a) and n-octadecylthiol (b). 

 

 

Figure S7. θ*W and θ*OW of CuO-coated fabric modified with 0.2 mM n-octadecylthiol. 

 

 

Figure S8. Dynamic adhesion measurements of an oil droplet (1,2-dichloroethane) in water 

on the surfaces of the prepared fabrics modified with 0.1 mM (upper) and 0.2 mM (below) 

1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S9. A hexane droplet in water on the surface of the prepared fabric modified with 0.2 

mM 1H,1H,2H,2H-perfluorodecanethiol. The hexane droplet easily rolls along the inclined 

surface of the modified fabric. 

 

 

Figure S10. Element mapping images and element percent of the prepared fabric modified 

with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S11. Element mapping images and element percent of the prepared fabric modified 

with 15 mM 1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S12. XPS spectra of the prepared fabrics modified with 0.2 mM (a, b) and 15 mM (c, 

d) 1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S13. (a) C 1s and (b) Cu 2p XPS spectra of the CuO-coated fabrics after modification 

with 1H,1H,2H,2H-perfluorodecanethiol at different concentrations: (1) 0.1 mM, (2) 0.3 mM, 

(3) 1 mM, (4) 1.5 mM, and (5) 5 mM. (c) Intensity ratio of CF2− and C−C of the modified 

fabrics as a function of the thiol concentration. 

 

 

Figure S14. Photographs of original (a) and CuO-coated sponges before (b) and after (c) 

modification with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S15. SEM images of original (a, b) and dual superlyophobic (c, d) sponges. 

 

 

Figure S16. θ*W and θ*OW of original (upper) and dual superlyophobic (below) sponges. 
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Figure S17. Element mapping images of dual superlyophobic sponge. 
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Figure S18. SEM image and element percent of dual superlyophobic sponge. 

 

 

Figure S19. XPS spectra of original (a) and CuO-coated sponges before (b, c) and after (d-f) 

modification with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 

 

 

Figure S20. Photographs of original (a) and oxidized nickel foams before (b) and after (c) 

modification with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S21. SEM images of original (a, b) and dual superlyophobic (c, d) nickel foams. 

 

 

Figure S22. θ*W and θ*OW of original (upper) and dual superlyophobic (below) nickel foams. 

 



18 

 

 

Figure S23. Element mapping images of dual superlyophobic nickel foam. 
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Figure S24. SEM image and element percent of dual superlyophobic nickel foam. 

 

 

Figure S25. XPS spectra of original (a, b) and oxidized nickel foams before (c) and after (d-f) 

modification with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 

 

 

Figure S26. Photographs of original (a) and oxidized zinc sheets before (b) and after (c) 

modification with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 
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Figure S27. SEM images of original (a, b) and dual superlyophobic (c, d) zinc sheets. 

 

 

Figure S28. θ*W and θ*OW of original (upper) and dual superlyophobic (below) zinc sheets. 
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Figure S29. Element mapping images of dual superlyophobic zinc sheet. 
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Figure S30. SEM image and element percent of dual superlyophobic zinc sheet. 

 

 

Figure S31. XPS spectra of original (a, b) and oxidized zinc sheets before (c) and after (d-f) 

modification with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 

 

 

Figure S32. XRD patterns of original and dual superlyophobic zinc sheets. 
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Figure S33. Photographs of original (a) and oxidized copper sheets before (b) and after (c) 

modification with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 

 

 

Figure S34. SEM images of original (a, b) and dual superlyophobic (c, d) copper sheets. 
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Figure S35. θ*W and θ*OW of original (upper) and dual superlyophobic (below) copper sheets. 

 

 

Figure S36. Element mapping images of dual superlyophobic copper sheet. 
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Figure S37. SEM image and element percent of dual superlyophobic copper sheet. 
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Figure S38. XPS spectra of original (a, b), oxidized (c-e), and dual superlyophobic (f-i) 

copper sheets. 

 

 

Figure S39. XRD patterns of original and dual superlyophobic copper sheets. 
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Figure S40. Photographs of original (a), Cu-coated (b), oxidized (c), heat-treated (d), and 

dual superlyophobic (e) SSMs. 
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Figure S41. SEM images of original (a, b), Cu-coated (c, d), oxidized (e, f), heat-treated (g, 

h), and dual superlyophobic (i, j) SSMs. 
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Figure S42. θ*W and θ*OW of original (a), Cu-coated (b), oxidized (c), heat-treated (d), and 

dual superlyophobic (e) SSMs. 
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Figure S43. Element mapping images and element percent of original SSM. 
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Figure S44. Element mapping images and element percent of Cu-coated SSM. 
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Figure S45. Element mapping images and element percent of oxidized SSM. 
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Figure S46. Element mapping images and element percent of heat-treated SSM. 
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Figure S47. Element mapping images of dual superlyophobic SSM. 

 

 

Figure S48. SEM image and element percent of dual superlyophobic SSM. 
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Figure S49. XPS spectra of original (a, b), Cu-coated (c, f), oxidized (d, g), heat-treated (e, h), 

and dual superlyophobic (i-k) SSMs. 
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Figure S50. XRD patterns of original (1), Cu-coated (2), oxidized (3), heat-treated (4), and 

dual superlyophobic (5) SSMs. 

 

 

Figure S51. (a) Dichloroethane-water and (b) hexane-water mixtures are separated by the 

superhydrophilic fabric with the CuO coating. (c) Dichloroethane-water and (d) hexane-water 

mixtures are separated by the superhydrophobic fabric modified with 15 mM 

1H,1H,2H,2H-perfluorodecanethiol. Water in (a, c) and hexane in (b, d) are dyed by 

methylene blue and Sudan red, respectively. 
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Figure S52. Flux of immiscible oil-water mixtures (a) and emulsions (b) during separation 

using the dual superlyophobic fabric (a) and SSM (b), respectively. Oils include hexane (1), 

toluene (2), diesel (3, 3’), chloroform (1’), and 1,2-dichloroethane (2’). 
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Figure S53. COD and oil purity in collected filtrates of immiscible oil-water mixtures (a) and 

emulsions (b) after separation using the dual superlyophobic fabric (a) and SSM (b), 

respectively. Oils include hexane (1), toluene (2), diesel (3, 3’), chloroform (1’), and 

1,2-dichloroethane (2’). 
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Figure S54. Photographs of hexane-in-water (a) and toluene-in-water (b) emulsions before 

(left) and after (right) separation using the dual superlyophobic SSM. 

 

 

Figure S55. DLS and photographs (insets) of water-in-chloroform (a) and 

water-in-dichloroethane (b) emulsions before (left) and after (right) separation using the dual 

superlyophobic SSM. 
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Figure S56. SEM images, θ*W and θ*OW of the dual superlyophobic fabric after 10 separation 

cycles. 

 

 

Figure S57. SEM images, θ*W and θ*OW of the dual superlyophobic SSM after 10 separation 

cycles. 
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Figure S58. Dependency of θ*W (red line) and θ*OW (blue lines) on θW when f is 1. 

 

 

Figure S59. (a, b) SEM images, (c) θ*W, and (d) θ*OW of original flat copper sheet modified 

with 0.2 mM 1H,1H,2H,2H-perfluorodecanethiol. 
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Movie S1. θ*W of CuO-coated fabric. 

Movie S2. θ*W of CuO-coated fabric modified with 0.1 mM n-octadecylthiol. 

Movie S3. Sliding angles of the dual superlyophobic fabric. 

Movie S4. Separation of hexane-water mixture using the dual superlyophobic fabric. 

Movie S5. Separation of dichloroethane-water mixture using the dual superlyophobic fabric. 


