Electronic Supplementary Information

A novel nitrogen-doped reduced graphene oxide-bonded Sb nanoparticles for improved sodium storage performance

Yuyan Fang,^{a,c} Xin Xu,^{a,c} Yichen Du,^a Xiaoshu Zhu, *^b Xiaosi Zhou*^a and Jianchun Bao^a

^{*a*} Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

^b Center for Analysis and Testing, Nanjing Normal University, Nanjing 210023, China

^c Y.F. and X.X. contributed equally to this work.

*Corresponding authors. E-mail: zhouxiaosi@njnu.edu.cn; xiaoshu_zhu78@163.com

Fig. S1 TGA curves of Sb/N-rGO and Sb/rGO in air with a heating rate of 10 °C min⁻¹ from room temperature to 900 °C. The weight fractions of Sb in the Sb/N-rGO and Sb/rGO composites can be determined based on the weight loss from carbon combustion and the weight gain from the formation of Sb₂O₄. According to the following Equation S1, the contents of Sb in Sb/N-rGO and Sb/rGO are calculated to be about 78.5 and 80.1 wt%, respectively.

Sb (wt%) =
$$\frac{2 \times \text{atomic weight of Sb}}{\text{molecular weight of Sb}_2O_4} \times \frac{\text{final weight of Sb}_2O_4}{\text{initial weight of Sb/C}}$$

Fig. S2 (a) N₂ adsorption/desorption isotherms and (b) corresponding pore size distribution of Sb/N-rGO.

Fig. S3 (a) Raman spectra of Sb/rGO and rGO. (b) High-resolution Sb 3d XPS spectra of Sb/rGO and pristine Sb.

Fig. S4 Ex situ Sb 3d XPS curves of the Sb/N-rGO electrode at different stages of sodiation (S) and desodiation (D).

Fig. S5 (a) TEM image, (b) XRD pattern, (c) charge–discharge profiles, and (d) cycling performance of the Na₃V₂(PO₄)₃/C cathode between 2.5 and 3.8 V at 1 C (1 C = 118 mA g⁻¹).

Fig. S6 (a) Charge–discharge voltage curves of the full cell consisting of Sb/N-rGO anode and $Na_3V_2(PO_4)_3/C$ cathode at 0.1 A g⁻¹. (b) Cycling performance and corresponding Coulombic efficiency of the full cell at 0.1 A g⁻¹. (c) Rate capability of the full cell.

Table S1 Comparison of sodium storage properties of various Sb-based anode materials.

Sb-based anode materials	Reversible capacity (mAh g ⁻¹)	Cycling stability	Rate capability (mAh g ⁻¹)	Ref.
Sb/N-rGO	521.9 (100 mA g ⁻¹)	90.7% (500 cycles)	304.8 (5 A g ⁻¹)	This work
Sb-NDs⊂CNs	$507 (100 \text{ mA g}^{-1})$	94% (100 cycles)	$271 (2 \text{ A g}^{-1})$	1
Sb@NC	440 (100 mA g^{-1})	75% (300 cycles)	237 (5 A g ⁻¹)	2
hollow Sb@C yolk-shell spheres	600 (50 mA g ⁻¹)	82% (100 cycles)	279 (4.2 A g ⁻¹)	3
Sb@C-5	$473 (100 \text{ mA g}^{-1})$	86% (240 cycles)	$370 (5 \text{ A g}^{-1})$	4
Sb@TiO _{2-x}	549 (2.64 A g ⁻¹)	55% (1000 cycles)	$312 (13.2 \text{ A g}^{-1})$	5
Sb/MLG	$452 (100 \text{ mA g}^{-1})$	90% (200 cycles)	$210 (5 \text{ A g}^{-1})$	6
10-Sb@C	$435 (100 \text{ mA g}^{-1})$	88.5% (500 cycles)	$270 (4 \text{ A g}^{-1})$	7
Sb-N/C	796 (50 mA g ⁻¹)	38.3% (60 cycles)	$142 (10 \text{ A g}^{-1})$	8
Sb-C nanofibers	$495 (200 \text{ mA g}^{-1})$	90% (400 cycles)	337 (3 A g ⁻¹)	9
SbNP@C	$422 (100 \text{ mA g}^{-1})$	82.9% (300 cycles)	104 (5A g ⁻¹)	10
SbNP/MWCNT	$502 (200 \text{ mA g}^{-1})$	76% (120 cycles)	225 (2 A g ⁻¹)	11
Sb/C	610 (100 mA g ⁻¹)	94% (100 cycles)	309 (2 A g ⁻¹)	12

 Table S2 Kinetic parameters of the electrodes.

Samples	$\mathbf{R}_{\mathrm{SEI}}\left(\mathbf{\Omega} ight)$	$R_{ct}(\Omega)$
Sb/N-rGO	21.7	99.0
Sb/rGO	33.3	155.9
Sb	41.5	202.3

Fig. S7 GITT curves of Sb, Sb/rGO, and Sb/N-rGO for (a) sodiation and (b) desodiation of the second cycle. Corresponding sodium ion apparent diffusion coefficients of Sb, Sb/rGO, and Sb/N-rGO for (c) sodiation and (d) desodiation.

According to the Fick's second law of diffusion, the diffusivity coefficient of sodium ions (D_{Na}^{+}) can be calculated based on the following equation:¹³

$$D_{\mathrm{Na}^{+}} = \frac{4}{\pi\tau} \left(\frac{m_{\mathrm{B}}V_{\mathrm{M}}}{M_{\mathrm{B}}S}\right)^{2} \left(\frac{\Delta E_{\mathrm{s}}}{\Delta E_{\mathrm{t}}}\right)^{2}$$

where τ is the pulse duration, $m_{\rm B}$ is the mass of active material, $M_{\rm B}$ is the molar mass of Sb, $V_{\rm M}$ is the molar volume, and S is the active surface area of the Sb/N-rGO electrode. $\Delta E_{\rm s}$ and $\Delta E_{\rm t}$ can be gotten from the GITT curves (Fig. S7a and b). As shown in Fig. S7c and d, sodium ion diffusivity coefficient attains a magnitude of 10^{-6} cm² s⁻¹.

Fig. S8 Nyquist plots of the Sb/N-rGO electrode after different cycles.

Samples	$\mathbf{R}_{\mathrm{SEI}}\left(\Omega ight)$	$R_{ct}(\Omega)$
After 1 cycle	21.7	99.0
After 2 cycles	20.2	97.4
After 5 cycles	19.3	96.5
After 10 cycles	18.7	95.8
After 100 cycles	18.4	94.9

Table S3 Kinetic parameters of the Sb/N-rGO electrode after various cycles.

References

- 1. C. Wu, L. F. Shen, S. Q. Chen, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Energy Storage Mater.*, 2018, **10**, 122.
- 2. X. Xu, Z. Dou, E. Gu, L. Si, X. Zhou and J. Bao, J. Mater. Chem. A, 2017, 5, 13411.
- J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F. K. Chiang, R. Hu, J. Liu, L. Sun and L. Gu, *Nano Lett.*, 2017, 17, 2034.
- 4. Z. M. Liu, X. Y. Yu, X. W. D. Lou and U. Paik, Energy Environ. Sci., 2016, 9, 2314.
- 5. N. Wang, Z. Bai, Y. Qian and J. Yang, Adv. Mater., 2016, 28, 4126.

- 6. L. Hu, X. Zhu, Y. Du, Y. Li, X. Zhou and J. Bao, Chem. Mater., 2015, 27, 8138.
- 7. N. Zhang, Y. Liu, Y. Lu, X. Han, F. Cheng and J. Chen, Nano Res., 2015, 8, 3384.
- 8. X. Zhou, Y. Zhong, M. Yang, M. Hu, J. Wei and Z. Zhou, Chem. Commun., 2014, 50, 12888.
- L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang and Y. Cao, *Energy Environ. Sci.*, 2014, 7, 323.
- 10. Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu and C. Wang, Acs Nano, 2013, 7, 6378.
- 11. X. Zhou, Z. Dai, J. Bao and Y. G. Guo, J. Mater. Chem. A, 2013, 1, 13727.
- 12. J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai and H. Yang, Chem. Commun., 2012, 48, 7070.
- 13. W. Weppner and R. A. Huggins, J. Electrochem. Soc., 1977, 124, 1569.