Polystyrene with methoxytriphenylamine-conjugated-thiophene moiety side-chain as a dopant-Free hole-transporting material for perovskite solar cells

Jianchang Wu^{a,b}, Chang Liu^b, Manman Hu^b, Wenchang Tan^{b,*}, Yanqing Tian^{b,*}, Baomin Xu^{b,*}

^aSchool of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province

518055, China

^bDepartment of Materials Science and Engineering, Southern University of Science and Technology,

Shenzhen, Guangdong Province 518055, China (E-mails: tanwch@pku.edu.cn, tianyq@sustc.edu.cn, xubm@sustc.edu.cn)

Content:

Table S1. Materials, quantities and cost for the synthesis of HTM-P1.

Figure S1. TGA of HTM-M1 and HTM-P1.

Figure S2. DSC of HTM-M1.

Figure S3. DSC of HTM-P1.

Figure S4. Water contact angles on HTM2, HTM-M1, and HTM-P1.

Figure S5. Current–voltage curves of the devices based on HTM-P1 with different

concentration in chlorobenzene.

Table S2. Summary of device parameters of the devices based on HTM-P1 with different concentration in chlorobenzene; open-circuit voltage (V_{oc}), short-circuit current density (J_{sc}), fill factor (FF) and average efficiency (PCE).

Figure S6. ¹HNMR of 2.

Figure S7. ¹³CNMR of 2.

Figure S8. HRMS of 2.

Figure S9. ¹HNMR of 3.

Figure S10. ¹³CNMR of 3

Figure S11. HRMS of 3.

Figure S12. ¹HNMR of HTM-P1.

Chemical	Weight	Weight	Weight	Price of	Cost of	Total
	reagent	solvent	work up	chemical	chemical	Cost
	(g/g)	(g/g)	(g/g)	(\$/kg)	(\$/g	(\$/g)
					product)	
3-Thiophenemethanol	0.49			1208.30	0.59	
NBS	1.67			40.72	0.07	
THF		3		11.85	0.04	
Cealite			2	0.57	0.00	
diethyl ether			30	4.52	0.14	
NaOH			30	3.16	0.09	
Petroleum ether			200	7.41	1.48	
ethyl acetate			100	4.53	0.45	
silica gel			20	10.96	0.22	
Compound 1						3.08
Compound 1	0.44			3081.36	1.36	
4-[Di(p-	1.20			2265	2.72	
methoxyphenyl)amino]benzene-1-						
boronic acid						
Pd(PPh ₃) ₄	0.09			9049.77	0.81	
THF		17.8		11.85	0.21	
K ₂ CO ₃	1.10			7.41	0.01	
water		10			0.00	
CH ₂ Cl ₂			200	4.44	0.89	
Na ₂ SO ₄			5	3.26	0.02	
MeOH			10	3.32	0.03	
silica gel			20	10.96	0.22	
Compound 2						6.26
Compound 2	1.07			6264.06	5.32	
4-Vinylbenzylchloride	0.34			301.66	0.08	
NaH	0.05			301.55	0.13	
DMF		5		5.42	0.03	
Na ₂ SO ₄			5	3.26	0.02	
CH ₂ Cl ₂			200	4.44	0.89	
Petroleum ether			100	7.41	0.74	
silica gel			20	10.96	0.22	
Compound 3						8.72
Compound 3	1.16			8715.48	10.11	
AIBN	0.01			49.01	0.0005	
THF		2		11.85	0.02	
MeOH			20	3.32	0.07	
HTM-P1						10.20

TableS1. Materials, quantities and cost for the synthesis of HTM-P1.

Figure S1. TGA of HTM-M1 and HTM-P1

Figure S2. DSC of HTM-M1. a) The first heating and cooling (25 – 100 °C); b) the second heating and cooling, and the third heating (25 – 260 °C). The T_g of HTM-M1 is 46 °C, and the polymeric reaction of HTM-M1 begins at around 175 °C. From the Figure S2b we can see that the T_g increased to 125 °C after the polymerization of HTM-M1.

Figure S4. Water contact angles on HTM2, HTM-M1, HTM-P1, HTM2 with dopant (Li-TFSI).

Figure S5. Current–voltage curves of the devices based on HTM-P1 with different concentrations in chlorobenzene.

Table S2. Summary of device parameters of the devices based on HTM-P1 with different concentrations in chlorobenzene; open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF) and average efficiency (PCE).

	J _{sc} [mA cm ⁻²]	V _{oc} [V]	FF	Best PCE [%]
5 mg/mL	25.0	0.95	55.3	12.8
10 mg/mL	24.8	1.08	63.9	17.2
20 mg/mL	24.7	1.07	62.1	16.4

Figure S7. ¹³C NMR of compound 2.

Figure S9. ¹H NMR of compound 3.

