Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Fig. S1 TGA curves of UiO-67, RuCl@UiO, RuOH₂@UiO, RhCl@UiO and RhOH₂@UiO.

Fig. S2 FT-IR spectras of UiO-67, RuCl@UiO, RuOH2@UiO, RhCl@UiO and RhOH2@UiO.

Fig. S3 UV-vis absorption spectra of Ru(bpy)₃Cl₂, H₂RuCl, H₂RuOH₂, H₂RhCl and H₂RhOH₂ in DMF solution $(1 \times 10^{-5} \text{ mol } 1^{-1})$.

Fig. S4 Diffuse reflection UV-vis absorption spectra of UiO-67, RuCl@UiO, RuOH₂@UiO, RhCl@UiO and RhOH₂@UiO.

Fig. S5 PXRD patterns of RhOH₂@UiO before and after 174 h photocatalytic hydrogen evolution experiments in different DMF/H₂O solution.

Fig. S6 PXRD patterns for PSE-MOFs after 6 h photocatalytic CO₂ reduction experiments.

Fig. S7 Photoluminescence spectra of $(Ru(bpy)_3Cl_2, 4 mg)$ in a mixed solution of 5mL DMF/H₂O (v/v, 4/1). And changing spectra after 0.3 µmol H₂RuCl, H₂RuOH₂, H₂RhCl or H₂RhOH₂ was added into the solution, respectively.

Fig. S8 Photoluminescence spectra of $(Ru(bpy)_3Cl_2, 4 mg)$ in a mixed solution of 5 mL DMF/H₂O (v/v, 4/1). And changing spectra after 0.2 and 1 mL TEOA was added into the solution.

Fig. S9 Photoluminescence spectra of $(Ru(bpy)_3Cl_2, 4 \text{ mg})$ in a mixed solution of 5mL DMF/H₂O (v/v, 4/1). And changing spectra after 0.2 and 0.4 mL DMA was added into the solution.

Fig. S10 The cyclic voltammograms (CVs) of 1mM H₂RuCl, H₂RuOH₂, H₂RhCl and H₂RhOH₂ in DMF solvent.

Complex	H ₂ RuCl	H ₂ RhOH ₂
Temperature	150 K	150 K
Chemical formula	$C_{22}H_{24}Cl_2N_2O_5Ru$	$C_{44}H_{56}N_8O_{25}Rh_2$
CCDC number	1831370	1831371
Formula weight	568.40	1302.78
crystal system	Triclinic	Monoclinic
space group	<i>P</i> -1	$P2_1$
<i>a</i> (Å)	8.4046(3)	8.1896(1)
<i>b</i> (Å)	10.7488(3)	20.1788(2)
<i>c</i> (Å)	12.1725(4)	15.8594(2)
α (deg)	91.608(3)	90
β (deg)	95.600(3)	90.440(1)
γ (deg)	90.126(3)	90
$V(\text{\AA}^3)$	1094.21(6)	2620.79(5)
Ζ	2	2
D_{Calcd} (g cm ⁻³)	1.725	1.651
$\mu \ (\mathrm{mm}^{-1})$	8.379	5.920
Ref. collected	5573	26877
Independent ref.	3558	8559
$\mathbf{R}_{\mathrm{int}}$	0.0263	0.0521
Goodness of fit	1.022	1.034
$R1^{a} [I > =2\sigma(I)]$	0.0418	0.0308
$wR_2^{\mathrm{b}}[I > = 2\sigma(I)]$	0.1211	0.0770

Table S1 Crystal data for H₂RuCl and H₂RhOH₂ complex.

^a R₁= $\Sigma(||F_0| - |F_c||)/\Sigma|F_0|$; ^b wR₂=[$\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2$]^{1/2}

Table S2 Hydrogen evolution performance of some similar molecule catalyst systems by incorporating catalyst into MOF frameworks.^a

MOFs	Photosensitizer	Catalyst	TON	Amount
RhOH ₂ @UiO	Ru(bpy) ₃ Cl ₂	[Rh(Cp*)(bpydc)	470 (174 h)	122.2 µmol (174 h)
(This work)		$(OH_2)](NO_3)_2$		
Pt _{0.1} _Ir_BuiO ^{S[1]}	[Ir(ppy) ₂ (bpydc)] ⁻ Na ⁺	Pt/ H2Pt(bpydc)Cl2	343 (156 h)	11.9µmol (156 h)
Ru-Pt@UiO-67 ^{S[2]}	H ₂ Ru(bpydc)(bpy) ₂	H ₂ Pt(bpydc)Cl ₂		>0.5 µmol (5 h)
UiO-66-[FeFe]-	Ru(bpy) ₃ Cl ₂	H ₂ [FeFe](dcbdt)(CO) ₆		~3.5µmol (2.5 h)
(dcbdt)(CO) ₆ ^{S[3]}				

^adcbdt= 1,4-dicarboxylbenzene-2,3-dithiolate.

Table S3 CO₂ photo-reduction performance of some similar molecule catalyst systems by incorporating catalyst into MOF frameworks.^a

MOFs	Photosensitizer	Catalyst	TON	TON	TON	TON(HCOO ⁻)
			(CO)	(H ₂)	(HCOO ⁻)	/TON(CO)
RhCl@UiO	Ru(bpy) ₃ Cl ₂	[Rh(Cp*)(bpydc)	2.7	76.0	38.9	14.4
(This work)		(Cl)]Cl•H ₂ O				
${Zr_6(O)_4(OH)_4}$ -	Re(CO) ₃ Cl(bpyd	Re(CO) ₃ Cl(bpydb)	6.44	0.4	-	-
[Re(CO) ₃ Cl(bpydb)] ₆ } ^{S[4]}	b)					
${Zr_6(O)_4(OH)_4}$ -	Re(bpydc)(CO) ₃	Re(bpydc)(CO) ₃ Cl	10.9	2.5	-	-
$[Re(CO)_3Cl(bpydc)]_6\}^{S[5]}$	Cl					
$Zr_6O_4(OH)_4(Mn(bpydc))$	$Ru(dmb)_3](PF_6)_2$	Mn(bpy)(CO) ₃ Br	4.5	1.0	110	24.4
(CO) ₃ Br) _{2.3} (bpydc) _{0.7} (bpdc)						
3 ^{S[6]}						
$MOF-253-Ru(CO)_2Cl_2^{S[7]}$	$Ru(CO)_2Cl_2$	Ru(bpydc)(CO) ₂ Cl ₂	7.3	11.9	35.8	4.9
Cp*Rh@UiO-67 ^{S[8]}	Ru(bpy) ₃ Cl ₂	Cp*Rh(bpydc)Cl ₂	-	54	85	∞
Zr-bpdc/RuCO ^{S[9]}	$[Ru(bpy)_3](PF_6)_2$	[Ru(H ₂ bpydc)(terpy)	18.1	33.8	73.2	4.0
		(CO)](PF ₆) ₂				

 a Bpydb=4,4'-(2,2'-bipyridine-5,5'-diyl)dibenzoate, dmb=4,4'-dimethyl-2,2'-bipyridine, terpy=2,2': 6',2''-terpyridine.

TableS4	Photocatalytic	$\rm CO_2$	reduction	results	for	RuCl@UiO,	RuOH ₂ @UiO,	RhCl@UiO	and	RhOH ₂ @UiO	under	$\rm CO_2$
atmosphere	e by a LED lamp). ^a										

Entry	Catalyst	Sacrificial agent	TON (CO)	TON (H ₂)	TON (HCOO ⁻)	TON(HCOO ⁻) /TON (CO)
S22	RuCl@UiO	TEOA 0.1 mL	0.5	0.5	5.1	10.2
S23	RuOH ₂ @UiO	TEOA 0.1 mL	2.5	3.9	26.0	10.4
S24	RhCl@UiO	TEOA 0.1 mL	1.0	10.0	9.9	9.9
S25	RhOH ₂ @UiO	TEOA 0.1 mL	0.9	9.5	5.7	6.3
S26	RuCl@UiO	DMA 1 mL	< 0.1	0.42	1.3	1.3
S27	RuOH ₂ @UiO	DMA 1 mL	< 0.1	0.32	1.1	1.1
S28	RhCl@UiO	DMA 1 mL	0.15	0.1	1.4	9.3
S29	RhOH ₂ @UiO	DMA 1 mL	0.13	0.35	1.5	11.5

^aConditions: Photosensitizer (Ru(bpy)₃Cl₂, 4 mg), Photocatalyst (4 mg), sacrificial agent, solvents (MeCN 5 mL), CO₂ bubbling for 20 min, and irradiation with a 100 W LED lamp for 6 h.

Table S5 Electrochemical potentials ($E_{1/2}$ vs.Ag/AgCl) of 1mM H₂RuCl, H₂RuOH₂, H₂RhCl and H₂RhOH₂ in DMF solvent.

Complex ^a	E _{1/2} (ox) / V vs. Ag/AgCl	E _{1/2} (red) / V vs. Ag/AgCl ^b
H ₂ RuCl	0.962 ^{ir}	-0.838, -1.697 ^{ir} , -2.417 ^{ir}
H ₂ RuOH ₂	0.967 ^{ir}	-0.862, -1.642 ^{ir} , -2.512 ^{ir}
H ₂ RhCl	0.962 ^{ir}	-0.748, -1.552 ^{ir} , -2.348
H ₂ RhOH ₂	0.967 ^{ir}	-0.745, -1.567 ^{ir} , -2.342

^aMeasured conditions: Ag/AgCl was as reference electrode, glassy carbon was as working electrode, and platinum plate was as counter electrode. Solvent: DMF, electrolyte: Bu_4NPF_6 (0.1 M), scan rate: 0.1 V/s. ir = irreversible. ^bTranslation to values *vs.* NHE: +0.2.

Supplementary References

- [1] D. Kim, D. R. Whang, S. Y. Park, Journal of the American Chemical Society 2016, 138, 8698-8701.
- [2] C.-C. Hou, T.-T. Li, S. Cao, Y. Chen, W.-F. Fu, J. Mater. Chem. A 2015, 3, 10386-10394.
- [3] S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997-17003.
- [4] R. Huang, Y. Peng, C. Wang, Z. Shi, W. Lin, Eur. J. Inorg. Chem. 2016, 2016, 4358-4362.
- [5] C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445-13454.
- [6] H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak, S. M. Cohen, Inorg. Chem. 2015, 54, 6821-6828.
- [7] D. Sun, Y. Gao, J. Fu, X. Zeng, Z. Chen, Z. Li, Chem. Commun. 2015, 51, 2645-2648.
- [8] M. B. Chambers, X. Wang, N. Elgrishi, C. H. Hendon, A. Walsh, J. Bonnefoy, J. Canivet, E. A. Quadrelli, D. Farrusseng, C. Mellot-Draznieks, M. Fontecave, *ChemSusChem* 2015, *8*, 603-608.
- [9] T. Kajiwara, M. Fujii, M. Tsujimoto, K. Kobayashi, M. Higuchi, K. Tanaka, S. Kitagawa, Angew. Chem., Int. Ed. 2016, 55, 2697-2700.