SUPPLEMENTARY INFORMATION TO THE PAPER

AN OUTSTANDING EFFECT OF GRAPHITE IN NANO-MgH₂-TiH₂ ON HYDROGEN STORAGE PERFORMANCE

by M. Lotoskyy^a, R. Denys^b, V. Yartys^c, J. Eriksen^b, J. Goh^a, S. Nyallang Nyamsi^a, C. Sita^a, and F. Cummings^d

- a. HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa, mlototskyy@uwc.ac.za
- b. HYSTORSYS AS, P.O. Box 45, Kjeller NO-2027, Norway, roman.denys@hystorsys.no
- c. Institute for Energy Technology, P.O. Box 40, Kjeller NO-2027, Norway, volodymyr.yartys@ife.no
- d. Electron Microscope Unit, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa, fcummings@uwc.ac.za

Table S1. Summary of experimental conditions used during kinetic studies

 ("low-temperature" H absorption)

A. Mg_{0.9}Ti_{0.1}:

Cycle		Absor	rption		Desorption					
No.	<i>T</i> , °C	P ₀ , bar	P _f , bar	⊿Cmax	<i>T</i> , °C	<i>P</i> ₀ , bar	P _f , bar	⊿Cmax		
				, wt.%				, wt.%		
0					330	0.001	0.23	6.3		
1	100	10.25	5.5	5.19	330	0.19	0.40	5.58		
2	100	10.2	5.9	4.74	330	0.2	0.39	5.29		
3	100	10.3	6.2	4.5	330	0.2	0.39	5.04		
4	330	10	8.9	5.82	330	1.05	2.14	5.95		
5	100	10.3	6.65	4.01	330	0.22	0.38	4.78		

B. $Mg_{0.9}Ti_{0.1} + 5\%$ C:

Cycle	Absorption				Desorption				
No.	<i>T</i> , °C	P ₀ , bar	P _f , bar	⊿ Cmax	<i>T</i> , °C	P ₀ , bar	P _f , bar	⊿Cmax	
				, wt.%				, wt.%	
0					330	0.001	0.235	5.96	
1	100	10.3	4.7	5.58	330	0.19	0.42	5.78	
2	100	10.4	4.8	5.6	330	0.19	0.42	5.77	
3	100	10.5	4.7	5.68	330	0.19	0.42	5.78	
4	330	10	8.7	6.01	330	1.0	2.2	5.97	
5	100	10.5	4.8	5.67	330	0.19	0.42	5.78	
6	150	10.5	4.7	5.74	330	0.19	0.42	5.79	
7	100	10.4	4.8	5.64	330	0.19	0.42	5.78	
8	24	10.3	5.5	4.85	330	0.18	0.41	5.79	
9	200	10.4	4.5	5.89	330	0.19	0.42	5.80	
10	100	10.5	4.8	5.62	330	0.2	0.42	5.77	
11	125	10.4	4.7	5.75	330	0.19	0.42	5.77	
12	75	10.3	5.1	5.23	330	0.19	0.42	5.75	
13	125	10.4	4.7	5.65	330	0.19	0.42	5.80	
14	150	10.4	4.8	5.60	330	0.2	0.42	5.78	
15	100	10.35	6.67	5.65	330	1	2.20	5.941	
16	200	10.25	4.45	5.93	330	0.18	0.40	5.79	
				(1 ·	1)				

(to be continued)

¹After holding the sample at the H₂ pressure and room temperature for 1 week

Table S1 (B) – continued

Cycle		Abs	orption			Desorption				
No.	<i>T</i> , °C	P ₀ , bar	P _f , bar	⊿Cmax	<i>T</i> , °C	P_0 , bar	P _f , bar	⊿Cmax		
				, wt.%				, wt.%		
17	50	10.24	5.32	4.96	330	0.2	0.41	5.77		
18	135	10.5	4.69	5.76	330	0.2	0.44	5.84		
19	170	10.5	4.68	5.80	330	0.19	0.41	5.77		
20	100	10.33	4.495	5.79	330	0.19	0.41	5.73		
21	120	10.53	4.797	5.69	330	0.2	0.427	5.74		
22	80	10.37	5.152	5.23	330	0.19	0.417	5.73		
23	140	10.36	4.563	5.75	330	0.188	0.413	5.74		
24	160	10.5	4.647	5.84	330	0.189	0.415	5.74		
25	100	10.34	4.948	5.35	330	0.2	0.415	5.71		
26	180	10.48	4.684	5.81	330	0.181	0.407	5.77		
27	330	9.9	8.6	6.01	330	1.04	2.21	5.94		
28	220	10.5	4.62	5.93	330	0.192	0.416	5.76		
29	200	10.5	4.48	5.92	330	0.189	0.414	5.75		
30	100	10.42	4.9	5.47	330	0.065	0.29	5.75		
31	350	10.3	9.1	6.01	350	0.12	0.35	5.83		
32	320	10.3	9.1	6.01	320	0.12	0.35	5.84		
33	300	10.2	9.0	6.0	300	0.12	0.35	5.83		
34	280	10.2	9.0	5.97	280	0.12	0.35	5.83		
35	100	10.41	4.725	5.64	330	0.181	0.401	5.69		
36	100	10.38	4.88	5.51	330	0.188	0.41	5.66		
37	330	9.9	8.7	5.97	330	1.04	2.22	5.97		
38	330	10.1	8.85	6.01	330	1.04	2.22	5.98		
39	200	10.6	4.6	5.92	330	0.188	0.413	5.75		
40	100	10.39	4.865	5.49	330	0.185	0.406	5.65		
41	330	10	8.8	6.02	330	1.06	2.24	5.97		
42	330	10	8.8	5.98	330	1.04	2.21	5.96		
43	330	10.1	8.9	5.97	330	1.04	2.22	5.96		
44	330	10	8.8	5.99	330	1.04	2.22	5.95		
45	100	10.5	4.84	5.62	330	0.189	0.412	5.65		
46	330	9.9	8.68	6.02	330	1.04	2.22	5.94		
47	330	10	8.8	5.99	330	1.04	2.22	5.95		
48	330	10	8.8	5.97	330	1.04	2.22	5.97		
49	200	10.5	4.56	5.93	330	0.191	0.416	5.73		
50	100	10.33	4.65	5.63	UI	nloaded in the	hydrogenate	d state		

Figure S1.

TDS curves for the as-prepared materials. The values in brackets next to the curve labels specify the total amounts of hydrogen [wt.%] desorbed from the samples.

A – TDS curves for $Mg_{0.9}Ti_{0.1}+5\%$ C; curve labels correspond to the heating rates [°C min⁻¹] followed by the peak temperature [°C] in brackets.

B – Kissinger plots for Mg (1), Mg + 5% C (2), $Mg_{0.9}Ti_{0.1}$ (3), $Mg_{0.9}Ti_{0.1}$ + 5% C (4), $Mg_{0.75}Ti_{0.25}$ (5), and $Mg_{0.5}Ti_{0.5}$ (6).

Experimental (points) and calculated (lines) thermal desorption spectra (A) and ratedependence functions (B) derived from the experimental TDS data for Mg + 5% C.

Curve captions correspond to cycle number followed by the average heating rate [K min⁻¹] (in brackets).

Dependence of fitting parameters (Eq. 4 in the main text) on the number of re-hydrogenation – dehydrogenation cycle for $Mg_{0.9}Ti_{0.1}$ (A) and $Mg_{0.9}Ti_{0.1}$ + 5% C (B).

Hydrogen absorption (A–C) and desorption (D–F) kinetics at T=350 °C (experimental points and calculated curves) for the samples $Mg_{0.9}Ti_{0.1}$ (A, D), $Mg_{0.9}Ti_{0.1}$ + 5% C (B, E) and $Mg_{0.75}Ti_{0.25}$ (C, F). Curve labels correspond to the numbers of the absorption/desorption cycle.

	Cruela		Fitting parameters (Eq. 6) ²									
Sample	number (wt.% H observed)	A1 [wt% H]	k_1 [min ⁻¹]	<i>n</i> 1	A2 [wt% H]	$k_2 [\mathrm{min}^{-1}]$	<i>n</i> ₂	$N_{max} = A_1 + A_2$ [wt% H]	$w_2 = A_2 / N_{\text{ma}}$	R ²		
	2 (5.38)	4.94(8)	1.032(4)	1.092(8)	0.5(1)	0.072(6)	0.8(2)	5.44	0.09	0.9995		
Ma Ti	5 (4.80)	3.91(6)	1.132(7)	1.28(2)	1.01(8)	0.105(9)	0.57(5)	4.92	0.21	0.9993		
$Mg_{0.9} I_{0.1}$	10 (4.19)	3.05(5)	1.163(8)	1.41(2)	1.24(6)	0.15(1)	0.57(3)	4.29	0.29	0.9992		
	30 (3.61)	2.11(6)	1.25(1)	1.47(4)	1.77(1.9)	0.096(4)	0.61(3)	3.88	0.46	0.9990		
	2 (5.85)	4.07(8)	1.35(5)	0.93(1)	1.77(8)	0.234(4)	2.13(6)	5.84	0.30	0.9997		
	5 (5.88)	4.2(1)	1.45(6)	1.04(1)	1.6(1)	0.330(9)	2.2(1)	5.80	0.28	0.9997		
$Mg_{0.9}I_{10.1} + 59/C$	10 (5.83)	5.78(2)	1.066(5)	0.962(4)	0.2(1)	0.01(9)	1.3(5)	5.98	0.03	0.9994		
370C	50 (5.73)	5.5(1)	0.678(5)	1.175(8)	0.3(1)	0.10(3)	1.0(4)	5.80	0.05	0.9996		
	101 (5.78)	5.2(2)	0.50(1)	1.37(1)	0.6(2)	0.12(3)	1.6(4)	5.80	0.10	0.9997		
	2 (4.36)	3.80(7)	1.00(2)	0.901(6)	0.58(8)	0.10(1)	1.0(1)	4.38	0.13	0.9995		
	5 (4.29)	3.16(9)	1.13(1)	1.00(1)	1.2(1)	0.13(1)	0.83(7)	4.36	0.28	0.9995		
$Mg_{0.75} I_{0.25}$	10 (4.13)	2.24(8)	1.24(1)	1.23(3)	2.02(9)	0.148(7)	0.64(3)	4.26	0.47	0.9994		
	40 (3.79)	1.64(6)	1.41(1)	1.49(5)	2.39(7)	0.118(3)	0.64(2)	4.03	0.59	0.9993		

Table S2. Parameters of H absorption kinetics during cycling (T=350°C).

Table S3. Parameters of H desorption kinetics during cycling (T=350°C).

	Cycle	Fitting parameters (Eq. 5)						
Sample	number (wt.% H observed)	N _{max} [wt% H]	<i>k</i> [min ⁻¹]	п	R^2			
	2 (5.37)	5.374(2)	1.899(5)	1.230(6)	0.9996			
M. T	5 (4.80)	4.790(2)	2.064(8)	1.29(1)	0.9992			
$Mg_{0.9} I_{0.1}$	10 (4.21)	4.188(2)	2.111(9)	1.36(1)	0.9992			
	30 (3.58)	3.580(3)	2.14(1)	1.43(2)	0.9984			
	2 (5.85)	5.855(4)	1.419(6)	1.26(1)	0.9991			
	5 (5.84)	5.852(4)	1.455(6)	1.261(9)	0.9992			
$Mg_{0.9}T_{10.1} + 50/C$	10 (5.83)	5.835(5)	1.506(5)	1.262(8)	0.9993			
5%C	50 (5.74)	5.752(5)	1.236(6)	1.39(1)	0.9987			
	101 (5.76)	5.767(5)	1.104(5)	1.40(1)	0.9995			
	2 (4.37)	4.375(2)	2.86(2)	1.09(1)	0.9987			
M. T	5 (4.31)	4.310(2)	2.53(1)	1.10(1)	0.9987			
$Mg_{0.75} \Pi_{0.25}$	10 (4.14)	4.145(2)	2.50(1)	1.16(1)	0.9989			
	40 (3.80)	3.807(2)	2.57(1)	1.19(1)	0.9989			

² Here and below the references relate to the main text of the paper

Arrhenius plot of the rate constant for hydrogen absorption in $Mg_{0.9}Ti_{0.1}$ + 5% C calculated by the fitting of the experimental data (Figure 4A) with Eq. 5.

Hydrogen absorption kinetics for the sample $Mg_{0.9}Ti_{0.1} + 5\%$ C. A – at T=200°C; B – at T=330 °C. Curve labels correspond to the number of the absorption/desorption cycle.

	Cycle				Fitting	g parameters (Ed	1. 6)			
Sample	number (wt.% H observed)	A1 [wt% H]	k_1 [min ⁻¹]	<i>n</i> ₁	A2 [wt% H]	k_2 [min ⁻¹]	<i>n</i> ₂	N _{max} = A ₁ +A ₂ [wt% H]	$w_2 = A_2 / N_{\text{max}}$	R ²
	1 (5.19)	4.03(3)	0.481(4)	0.500(2)	1.35(4)	0.0041(1)	0.47(2)	5.38	0.25	0.9982
М Т.	2 (4.74)	3.21(5)	0.481(3)	0.500(4)	1.93(7)	0.00274(5)	0.40(2)	5.14	0.38	0.9974
$Mg_{0.9}I_{0.1}$	3 (4.50)	3.37(5)	0.318(2)	0.500(4)	1.8(2)	0.0007(1)	0.40(3)	5.17	0.35	0.9964
	5 (4.01)	2.48(3)	0.2839(8)	0.500(2)	2.02(5)	0.00182(2)	0.400(9)	4.50	0.45	0.9997
	1 (5.61)	4.22(4)	0.0396(1)	0.820(2)	1.44(5)	0.0055(2)	0.74(2)	5.66	0.25	0.9999
	2 (5.63)	4.18(7)	0.03551(5)	0.822(3)	1.45(7)	0.0086(5)	0.71(2)	5.63	0.26	0.9999
	3 (5.71)	4.33(5)	0.03801(5)	0.836(3)	1.38(5)	0.0121(5)	0.667(8)	5.71	0.24	0.9999
	5 (5.70)	4.47(7)	0.0565(1)	0.885(5)	1.22(7)	0.017(1)	0.68(1)	5.69	0.21	0.9997
	7 (5.67)	4.4(1)	0.0753(2)	0.820(6)	1.3(1)	0.016(2)	0.66(3)	5.70	0.23	0.9995
	10 (5.65)	3.69(8)	0.1067(2)	0.856(6)	1.95(8)	0.023(1)	0.67(1)	5.64	0.35	0.9996
Ma Ti	15 (5.65)	3.23(2)	0.1458(2)	0.912(3)	2.45(2)	0.0262(3)	0.645(3)	5.68	0.43	0.9998
$101g_{0.9} + 10.1$	20 (5.79)	2.83(4)	0.1272(4)	0.932(7)	2.97(4)	0.0208(5)	0.578(5)	5.80	0.51	0.9996
+ 3%C	25 (5.35)	2.64(4)	0.1285(5)	0.949(7)	2.70(4)	0.0254(6)	0.582(5)	5.35	0.51	0.9995
	30 (5.47)	2.64(6)	0.1028(4)	0.851(8)	2.83(7)	0.0169(6)	0.598(8)	5.47	0.52	0.9996
	35 (5.64)	2.75(7)	0.0767(3)	0.763(7)	2.91(7)	0.0122(4)	0.566(8)	5.66	0.51	0.9996
-	36 (5.51)	2.81(7)	0.0707(3)	0.796(7)	2.70(7)	0.0130(5)	0.571(7)	5.51	0.49	0.9994
	40 (5.49)	2.71(6)	0.0722(2)	0.825(6)	2.80(7)	0.0116(4)	0.663(9)	5.51	0.51	0.9998
	45 (5.62)	2.77(7)	0.0584(2)	0.791(7)	2.88(7)	0.0096(3)	0.607(9)	5.65	0.51	0.9997
	50 (5.63)	2.80(7)	0.0511(1)	0.802(6)	2.86(7)	0.0090(3)	0.609(8)	5.66	0.50	0.9997

TableS4. Parameters of H absorption kinetics during cycling (T=100 °C).

Figure S8.

Changes of kinetic parameters (Eq. 6) of H absorption during cycling for the sample $Mg_{0.9}Ti_{0.1}$ + 5% C at T=200°C (A, B) and 330°C (C, D).

XRD patterns of dehydrogenated Mg_{0.9}Ti_{0.1} (A, B) and Mg_{0.9}Ti_{0.1} + 5% C(C, D). A, C – before cycling, B – after 30 H absorption/desorption cycles,
D – after 105 absorption/desorption cycles.
Background subtracted after the refinement.

Top: TEM image of the sample $Mg_{0.9}Ti_{0.1}$. SAD patterns from areas 1, 2 and 3, and EDS³ are shown below.

³ The observed Cu peaks in all the EDS spectra originate from the carbon-coated Cu grid, onto which the specimen is placed. This is also the reason of the overestimation of carbon content in the samples derived from the EDS data.

Figure S11. Top: TEM images of the sample $Mg_{0.9}Ti_{0.1}$ (30 cycles). SADP from areas 1, 2 and 3, and EDS⁴ are shown below.

 $^{^4}$ In average, the oxygen and carbon contents in the cycled samples determined by EDS were found to be higher than in the non-cycled ones. It allows us to conclude that sample contamination with oxygen and carbon mainly took place during cyclic H absorption / desorption due to traces of O₂, H₂O and hydrocarbons in residual atmosphere.

Figure S12.

Top: TEM images of the sample $Mg_{0.9}Ti_{0.1} + 5\%$ C. SADP from areas 1, 2 and 3, and EDS are shown below. Two spots with d≈4.9 Å (marked in the pattern 1) may belong to the second-order reflection from (1 0 1) plane of Mg, or (1 1 1) plane of TiH₂.

Figure S13. Top left: filtered image of Mg_{0.9}Ti_{0.1} + 5% C. Top right: Mg map (red), Middle left: Ti map (green). Middle right: C map (blue). Bottom: overlayed map.

Figure S14.

Top, mid-left: TEM images of the sample $Mg_{0.9}Ti_{0.1}$ + 5% C after 105 H absorption/desorption cycles. SADP from areas 1 and 2, and EDS⁵ are shown below.

⁵ See footnote ⁴

Figure S15.

Top left: filtered image of $Mg_{0.9}Ti_{0.1}$ + 5%C (105 cycles). Top right: Mg map (red), Middle left: Ti map (green). Middle right: C map (blue). Bottom: overlayed map.