Electronic Supplementary Information

Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction

Hongming Sun,^a Xiaobin Xu,^b Zhenhua Yan,^a Xiang Chen,^a Lifang Jiao,^a Fangyi Cheng,^{*a} Jun Chen^{a,c}

^{a.} Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071. E-mail: fycheng@nankai.edu.cn.

^{b.} Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.

^{c.} State Key Laboratory of Elemento-Organic Chemistry, Innovative Collaboration Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.

Fig. S1 Schematic illustration of the synthesis of Co-B-P supported on Ni foam.

Fig. S2 (a) EDS spectrum and elemental composition (inset) of Co-B-P-2/NF. (d) XRD pattern of Co-B-P-2/NF.

Fig. S3 The wettability test of Co-B-P nanosheet arrays (a) and Co-B-P nanospheres (b) deposited on Ni foil, respectively.

To eliminate the influence of the asperous substrate (Ni foam) for the contact angle measurements, the contact angles of Co-B-P nanosheet arrays and Co-B-P nanosheres loaded on Ni foil were also tested. The results indicate that Co-B-P nanosheet arrays on Ni foil is also hydrophilic, while contact angle between water and the Co-B-P

nanospheres on Ni foil is measured to be 105.0°, showing non-hydrophilic (Video S1). The result is consistent with that of Co-B-P/NF and Co-B-P-2/NF (Fig. 1c,f insets).

Fig. S4 (a, b) TEM images of Co-B-P/NF.

Fig. S5 XRD patterns of Co-P/NF, Co-B-P/NF and Co-B/NF.

Fig.S6 SEM images, SEM-EDS spectroscopies and elemental composition analysis of (a-c) Co-B-P/NF-1, (d-f) Co-B-P/NF-2, (g-i) Co-B-P/NF-3, (j-l) Co-B-P/NF-4. The elemental compositions of Co-B-P/NF-1, Co-B-P/NF-2, Co-B-P/NF-3 and Co-B-P/NF-4 from EDS analysis were Co_{2.80} B_{0.68}P_{0.32}, Co_{2.77}B_{0.82}P_{0.18}, Co_{2.95}B_{0.87}P_{0.13} and Co_{3.03}B_{0.94}P_{0.06}, respectively.

Fig. S7 (a) Low- and (b) high-magnification SEM images of Co-B/NF. (c) SEM image and EDS elemental mapping of Co and B. (d) The corresponding EDS spectrum and elemental composition analysis (inset).

Fig. S8 (a) Low- and (b) high-magnification SEM images of Co-P/NF. (c) SEM image and elemental mapping of Co and P. (d) The corresponding EDS spectrum and elemental composition analysis (inset).

Fig.S9 (a) Polarization curves of Co-B-P/NF-1, Co-B-P/NF, Co-B-P/NF-2, Co-B-P/NF-3 and Co-B-P/NF-4 in 1 M KOH electrolyte. (b) Tafel plots derived from (a). (c) Comparison of the overpotentials at 10 mA cm⁻² and Tafel slopes of the Co-B-P/NF-1, Co-B-P/NF, Co-B-P/NF-2, Co-B-P/NF-3 and Co-B-P/NF-4.

Fig. S10 (a) Original and iR-corrected polarization curves of Co-B-P/NF, Co-P/NF and Co-B/NF. (b) EIS Nyquist plots of Ni Foam, Co-B/NF, Co-P/NF, Co-B-P/NF and Pt/C recorded at overpotential of 100 mV.

Fig. S11 CV curves recorded at different scan rates between 0.10 and 0.17 V for (a) Ni foam, (b) Co-B/NF, (c) Co-B-P/NF and (d) Co-P/NF.

Fig. S12 Capacitive currents on the basis of scan rate for Ni foam, Co-B/NF, Co-P/NF and Co-B-P/NF at 0.135 V.

Calculation of electrochemically active surface area (ECSA):

The ECSA was determined assuming a C_{dl} capacitance (2 mF cm⁻²) of Ni foam (Fig. S11), which was used as the substrate and considered as the reference.^{s1}

E (V) vs. RHE

Fig. S13 (a) Polarization curves of Co-B/NF in 1 M KOH solution with or without 10 mM KSCN. (b) Polarization curves of Co-P/NF in 1 M KOH solution with or without 10 mM KSCN.

0.0

E (V) vs. RHE

Fig.S14 The XRD patterns of Co-B-P/NF after thermal treatment at different temperatures for 2 h.

Fig. S15 The polarization curves of Co-B-P/NF after thermal treatment at different temperatures.

Fig. S16 (a) CV curves recorded at different scan rates between 0.10 and 0.17 V for Co-B-P-2/NF. (b) Capacitive currents on the basis of scan rate for Co-B-P-2/NF. Calculation of ECSA is given below:

Fig. S17 ECSA-normalized initial polarization curves from Fig. 5a.

Fig. S18 Magnified chromoamperometry curves of Co-B-P/NF at overpotentials of 88 mV (a) and 165 mV (b).

Fig. S19 Polarization curves of Co-B-P/NF (a) and Pt/C (b) in 1 M KOH before and after 1000 cycles at a scan rate of 100 mV s⁻¹.

Fig. S20 (a) The SEM image and (b) EDS spectrum and elemental composition (inset) of Co-B-P/NF after the HER measurement at an overpotential of 88 mV for 20 h. The loading of Co-B-P on the Ni foam substrate before (5.12 mg cm⁻²) and after (4.96 mg cm⁻²) HER durability test was nearly maintained, indicating the good mechanical stability of the in-situ grown Co-B-P catalysts even at large working current density.

Fig. S21 High-resolution XPS spectra of (a) Co 2P, (b) B 1s and (c) P 2p after the HER measurement at an overpotential of 88 mV for 20 h.

Fig. S22 The SEM images of Pt/C (20 wt%) loaded on Ni foam before (a,b) and after (c,d) the HER measurement.

	- () () () ()	Overpotential (mV) at	
Catalyst	latel slope (mV dec ⁻¹)	−10 mA cm ⁻²	Ref.
Co-B-P/NF	42.1	42	This work.
Mo ₂ C@NC		60	S2
FeB ₂	87.5	61	S3
Ni-Co-P Nanocubes	60.1	150	S4
Co-NRCNTs		370	S5
Co ₉ S ₈ /CC	83	150	S6
EG/H-Co _{0.85} Se P	123.2	150	S7
NiCoP/rGO	124.1	209	S8
CoP ₂ /RGO	96	330	S9
Co/Co ₃ O ₄	90	90	S10
Co ₃ O ₄ -MTA	98		S11
Co-B@CoO/Ti	78	102	S12
Co/CoP nanocrystals	66	135	S13
МоВ	59		S14
CoSe ₂ /CF	52	95	S15
Ni0.89C00.11Se2 MNSN/NF	52	85	S16
NiO/Ni-CNT	51		S17
Ni-Mo/Ti	78	92	S18
Co(S _{0.71} Se _{0.29}) ₂	90	122	S19
Cu@CoS _x /CF	61	134	S20
MoS_2/Ni_3S_2	83.1	110	S21
O-Co ₂ P-3	61.1	160	S22
Ni-B _{0.54}	88	135	S23
Co@BCN	103.2	183	S24
rGO/W _x Mo _{1-x} S ₂	81.3	233	S25
Mo ₂ C@C	71	47	S26

Table S1. Comparison of the electrocatalytic HER activity of representative nonprecious HER catalysts in 1.0 M KOH electrolyte.

Notes and references

- s1. H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlögl and H. N. Alshareef, Nano Lett., 2016, 16, 7718–7725.
- s2. Y. Liu, G. Yu, G. D. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, Angew. Chem., Int. Ed., 2015, 54, 10752–10757.
- s3. H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D. L. Carroll and S. M. Geyer, Adv. Energy Mater., 2017, 7, 1700513.
- s4. Y. Feng, X. Yu and U. Paik, Chem. Commun., 2016, 52, 1633–1636.
- s5. X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, *Angew. Chem., Int. Ed.,* 2014, 53, 4372–4376.
- s6. L. L. Feng, M. Fan, Y. Wu, Y. Liu, G. D. Li, H. Chen, W. Chen, D. Wang and X. Zou, J. Mater. Chem. A, 2016, 4, 6860–6867.
- s7. Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C. S. Kim, C. Yuan and X. Feng, Adv. Mater., 2017, 2, 1701589.
- s8. J. Li, M. Yan, X. Zhou, Z. Q. Huang, Z. Xia, C. R. Chang, Y. Ma and Y. Qu, Adv. Funct. Mater., 2016, 26, 6785–6796.
- s9. J. Wang, W. Yang and J. Liu, J. Mater. Chem. A, 2016, 4, 4686–4690.
- s10. X. Yan, L. Tian, M. He and X. Chen, Nano Lett., 2015, 15, 6015–6021.
- s11. Y. P. Zhu, T. Y. Ma, M. Jaroniec and S. Z. Qiao, Angew. Chem., Int. Ed., 2016, 55, 1–6.
- s12. W. Lu, T. Liu, L. Xie, C. Tang, D. Liu, S. Hao, F. Qu, G. Du, Y. Ma, A. M. Asiri and X. Sun, Small, 2017, 13, 1700805.
- s13. H. Wang, S. Min, Q. Wang, D. Li, G. Casillas, C. Ma, Y. Li, Z. Liu, L. Li, J. J. Yuan, M. Antonietti and T. Wu, ACS Nano, 2017, 11, 4358–4364.
- s14. H. Vrubel and X. Hu, Angew. Chem., Int. Ed., 2012, 51, 12703–12706.
- s15. C. Sun, Q. Dong, J. Yang, Z. Dai, J. Lin, P. Chen, W. Huang and X. Dong, *Nano Res.*, 2016, 9, 2234–2243.
- s16. B. Liu, Y. F. Zhao, H. Q. Peng, Z. Y. Zhang, C. K. Sit, M. F. Yuen, T. R. Zhang, C. S. Lee and W. J. Zhang, *Adv. Mater.*, 2017, **29**, 1606521.
- s17. M. Gong, W. Zhou, M. C. Tsai, J. Zhou, M. Guan, M. C. Lin, B. Zhang, Y. Hu, D. Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang and H. Dai, *Nat. Commun.*, 2014, **5**, 4695.
- s18. J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He and A. M. Asiri, J. Mater. Chem. A, 2015, 3, 20056–20059.
- s19. L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang and Y. Wang, Adv. Funct. Mater., 2017, 27, 1701008.
- s20. Y. Liu, Q. Li, R. Si, G. D. Li, W. Li, D. P. Liu, D. Wang, L. Sun, Y. Zhang and X. Zou, Adv. Mater., 2017, **29**, 1606200.
- s21. J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, Angew. Chem., Int. Ed., 2016, 55, 1–7.
- s22. K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu and Y. Xie, Adv. Mater., 2017, 29, 1606980.
- s23. P. Zhang, M. Wang, Y. Yang, T. Yao, H. Han and L. Sun, *Nano Energy*, 2016, **19**, 98–107.
- s24. H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. Meng, K. Wu and J. Ye, ACS Nano, 2016, **10**, 684–694
- s25. Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O. O. Iyiola, N. Perea Lopez, A. Laura Elias, L. Pulickal Rajukumar, C. Zhou, B. Kabius, N. Alem, M. Endo, R. Lv, J. L. Mendoza-Cortes and M. Terrones, ACS Nano, 2017, 11, 5103–5112.
- s26. Y. Y. Chen, Y. Zhang, W. J. Jiang, X. Zhang, Z. Dai, L. J. Wan and J. S. Hu, ACS Nano, 2016, 10, 8851–8860.