Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Aluminum Incorporated *p*-CuO/*n*-ZnO Photocathode Coated with Nanocrystal Engineered TiO₂ Protective Layer for Photoelectrochemical Water Splitting and Hydrogen Generation

Saeid Masudy-Panah,^{1,2} Eugene Y.-J. Kong,¹ Negar Dasineh Khiavi,³ Reza Katal,⁴ and Xiao

Gong^{1,2}

¹Electrical and Computer Engineering, National University of Singapore, Singapore 119260

²Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and

Technology (SMART) Centre, Singapore

³Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia

⁴Department of Civil & Environmental Engineering, National University of Singapore,

Singapore 119260

Corresponding author e-mail: elegong@nus.edu.sg

Figure S1. Cross-sectional TEM images of (a) CuO and (b) CuO:Al thin films deposited at CuO sputtering power of 300 W and Al sputtering power of 12 W. The thickness of the CuO and CuO:Al is ~500 nm.

Figure S2. Absorption spectra of *p*-CuO:Al thin films deposited with Al sputtering power of 0-20 W. Optical absorption is enhanced with increasing Al incorporation.

Figure S3. Cross-sectional TEM image of the 30-nm-thick CuO interfacial layer inserted below the CuO:Al film in a *p*-(CuO/CuO:Al) photocathode.

Figure S4. XRD spectra of *p*-(CuO/CuO:Al) photocathodes (a) before and (b) after photocorrosion stability test. An additional Cu₂O(111) XRD peak at 2θ of 36.45 degrees can be found for both CuO and CuO:Al photocathodes after photocorrosion stability test, but the intensity of this peak is weaker in the CuO:Al photocathodes.

Figure S5. Top-view SEM images of the CuO and CuO:Al (@ A1: 12 W) photocathodes (a) before and (b) after photocorrosion stability test. Formation of small islands after the photocorrosion stability test, which is mainly caused by the reduction of CuO to Cu₂O, is reduced for the CuO:Al photocathode.

Figure S6. (a) Cross-sectional and (b) high-resolution TEM images of a p-(CuO/CuO:Al)/n-ZnO:Al photocathode fabricated with Al sputtering power of 20 W during ZnO:Al deposition. The thickness of the ZnO:Al layer is ~20 nm.

Figure S7. (a) Electrical resistivity and (b) hall mobility of thin sputter-deposited ZnO:Al films on glass substrate. The Al concentration in ZnO significantly influences its electrical resistivity and hall mobility.

Figure S8. Top-view SEM image of a p-(CuO/CuO:Al)/n-ZnO:Al/TiO₂/Au-Pd photocathode. The Au-Pd nanoparticles are randomly and uniformly distributed on the TiO₂ protective layer.

Table SI. Results of energy-dispersive X-ray spectroscopy (EDS) analysis of the CuO:Al thin films prepared at CuO sputtering power of 300 W and different Al sputtering power.

	Al: 0 W	Al: 1 W	Al: 6 W	Al: 12 W	Al: 20 W
Cu (%)	50	49.4	49.1	48.15	46.9
O (%)	50	49.2	49	48.1	46.8
Al (%)	0	0.4	1.9	3.75	6.3

Table SII. Cu, O, and Al percentages in the CuO:Al (Al: 0, 1, 6, 12, and 20 W) samples, calculated from XPS analysis.