Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Porous NiMoO_{4-x}/MoO₂ Hybrids as Highly Effective Electrocatalyst

for Water Splitting Reaction

*Zhe Zhang^a, Xingxing Ma^{a,b}, and Jilin Tang^{*a}*

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun 130022, China

E-mail: jltang@ciac.ac.cn. Tel/Fax: (+86) 431-85262734

^b University of Science and Technology of China, Hefei 230026, China

Figure S1. Nitrogen adsorption-desorptin isotherms (a) and pore size distribution curve (b) of $NiMoO_{4-x}/MoO_2$.

Figure S2. SEM images (1 and 2) with different magnification and corresponding Raman spectra (3) of the Precursor obtained after reaction for 0 h (a), 1 h (b), 2 h (c), 3 h (d), 4 h (e), and 5 h (f).

Figure S3. Polarization curves (a) and Tafel plots (b) of NiMoO_{4-x}/MoO₂ synthesized with different amount of H_2O_2 (1 M KOH, pH = 14).

Figure S4. Polarization curves (a) and Tafel plots (b) of $NiMoO_{4-x}/MoO_2$ synthesized with different amount of molybdenum powder (1 M KOH, pH = 14).

Figure S5. Polarization curves (a) and Tafel plots (b) of $NiMoO_{4-x}/MoO_2$ synthesized with different amount of SDS (1 M KOH, pH = 14).

Figure S6. Polarization curves (a) and Tafel plots (b) of $NiMoO_{4-x}/MoO_2$ synthesized at different hydrothermal reaction temperature (1 M KOH, pH = 14).

Figure S7. Polarization curves (a) and Tafel plots (b) of $NiMoO_{4-x}/MoO_2$ synthesized with different hydrothermal reaction time (1 M KOH, pH = 14).

Figure S8. Polarization curves (a) and Tafel plots (b) of $NiMoO_{4-x}/MoO_2$ synthesized with different annealing time (1 M KOH, pH = 14).

Figure S9. Polarization curves (a) and Tafel plots (b) of $NiMoO_{4-x}/MoO_2$ synthesized with different annealing temperature (1 M KOH, pH = 14).

Figure S10. Polarization curves of $NiMoO_{4-x}/MoO_2$ for HER (a) and OER (b) without iR correction.

Figure S11. Electrochemical cyclic voltammogram of NiMoO_{4-x}/MoO₂ (a) and NiMoO₄/MoO₂ (c). Differences in current density ($\Delta j = j_a - j_c$) at 0.185 V vs RHE plotted against scan rates of NiMoO_{4-x}/MoO₂ (b) and NiMoO₄/MoO₂ (d) (the linear slope equivalent to twice of the double–layer capacitance C_{dl})

Figure S12. SEM images of $NiMoO_{4-x}/MoO_2$ with different magnification after HER test.

Figure S13. XRD pattern of NiMoO_{4-x}/MoO₂ after HER test.

Figure S14. XPS survey spectrum (a) and high-resolution XPS spectra of Mo 3d (b), O 1s (c), and Ni 2p (d) of $NiMoO_{4-x}/MoO_2$ after HER test.

Figure S15. SEM images of $NiMoO_{4-x}/MoO_2$ with different magnification after OER test.

Figure S16. XRD pattern of NiMoO_{4-x}/MoO₂ after OER test.

Figure S17. XPS survey spectrum (a) and high-resolution XPS spectra of Mo 3d (b), O 1s (c), and Ni 2p (d) of $NiMoO_{4-x}/MoO_2$ after OER test.

Figure S18. SEM images of NiMoO_{4-x}/MoO₂(air) with different magnification.

Figure S19. XRD pattern of NiMoO_{4-x}/MoO₂(air).

Figure S20. XPS survey spectrum (a) and high-resolution XPS spectra of Mo 3d (b), O 1s (c), and Ni 2p (d) of $NiMoO_{4-x}/MoO_2(air)$.

Figure S21. Polarization curves (a, c) and Tafel plots (b, d) of NiMoO_{4-x}/MoO₂ and NiMoO_{4-x}/MoO₂(air). Electrochemical cyclic voltammogram (e) and differences in current density ($\Delta j = j_a - j_c$) at 0.185 V vs RHE plotted against scan rates (f) of NiMoO_{4-x}/MoO₂(air).

Catalyst	Current density (j, mA/cm²)	η at the corresponding <i>j</i> for HER (mV)	η at the corresponding <i>j</i> for OER (mV)	Ref.
NiMoO _{4-x} /MoO ₂	10	41	233	This work
Porous MoO ₂ Nanosheets	10	27	260	<i>Adv. Mater.</i> 2016, 28 , 3785
Mesoporous MoO _{3-x}	10	140		Adv. Energy Mater., 2016, 1600528.
MoNi ₄	10	15		Nature Commun., 2017, 8 , 15437.
MoNi ₄ /MoO _{3-x} Nanorod	10	17		J. Am. Chem. Soc. 2011, 137 , 14023
Porous MoC _x	10	142		Nature Commun., 2015, 6 , 6512.
Porous NiMoN	10	108		Adv. Energy Mater., 2016, 1600221.
Hollow NiMo ₃ S ₄	10	257		Angew. Chem. Int. Ed., 2016, 55 ,15240
MoS ₂ /RGO	10	150		J. Am. Chem. Soc. 2011, 133 , 7296
defect-rich MoS ₂	13	200		Adv. Mater. 2013, 25, 5807
NiMoN _x /C	2	170	0.24	Angew. Chem. Int. Ed. 2012, 51 , 6131
Co ₉ S ₈ @MoS ₂ /CNFs	10	190	430	Adv. Mater. 2015, 27 , 4752
Amorphous CoMoS ₄	10	143	342	Nanoscale, 2016, 8 , 18887
Co _{0.6} Mo _{1.4} N ₂	10	200		J. Am. Chem. Soc. 2013, 135 , 19186
MoB ₂	10	120		J. Am. Chem. Soc. 2017, 139 , 12370
Ni-Mo	10	65		ACS Nano, 2016, 10, 10397

Table S1 Comparison of HER and OER performance for $NiMoO_{4-x}/MoO_2$ with other electrocatalysts.