Supporting Information

All-Solid-State Interpenetrating Network Polymer Electrolytes for Long Cycle Life of Lithium Metal Batteries

Yongfen Tong*, Hailong Lyu, Yuzhong Xu, Bishnu Prasad Thapaliya, Peipei Li, Xiao-Guang Sun*, Sheng Dai*

Fig. S1 DSC thermograms of cross-linking solid state polymer based on 3PPEG-co-GMA-x and ED2003 recorded under nitrogen during the second heating scans at a scan rate of 10 °C min⁻¹, the molar ratio of the epoxy and amino is fixed 2:1.

Fig. S2 DSC thermograms of interpenetrating network solid state polymer membrane (INSPM-x) recorded under nitrogen during the second heating scans at a scan rate of 10 °C min⁻¹.

Fig. S3 XRD spectra of interpenetrating network solid polymer membrane (INSPM-x).

Fig. S4 Photographs (a) and (b), SEM images (c) and (d) of INSPM-60-LiTFSI, photographs demonstrating flammable behavior of liquid electrolyte (e) and INSPM-60-LiTFSI (f).

Fig. S5 (a) Stress-strain measurement of INSPM-60 at 25 °C with force ramp rate of 0.2 N/min and (b) storage and loss modulus measurement of INSPM-60 at a heating rate of 3 K/min.

Fig. S6 VTF fitting curves of INSPM-60-LiTFSI with various [O]/ [Li⁺].

Fig. S7 Dielectric permittivity (ϵ') spectra as functions of angular frequency ω of (a) INSPM-30-LiTFSI, (b) INSPM-60-LiTFSI, (c) INSPM-90-LiTFSI at different temperature and (d) a comparison of the three samples at 298 K.

Fig. S8 (a) Chronoamperometry profile of INSPM-60-LiTFSI; (b) linear sweep voltammetry curves of the cell based on INSPM-x-LiTFSI electrolyte at 60 °C, [O]/[Li] = 16.

Fig. S9 SEM images of the INSPM-60-LiTFSI membrane (a, b) and Li electrode (c, d) in a Li || INSPM-60-LiTFSI || Li cell before (a, c) and after (b, d) 2200 cycles.

[O]/	T _g ,°C	T _m (°C)	ΔH_{m}	Ea (kJ/mol)	A (Scm ⁻ ¹ K ^{0.5})	t ₊ _	σ/S cm ⁻¹	
[Li+]			(J/g)				25°C	100°C
8	-54.9	23.3	-40.4	8.95	0.28	-	2.1×10 ⁻⁵	3.3×10 ⁻⁴
16	-55.4	26.4	-50.5	9.89	1.89	0.37	5.6×10-5	1.1×10-3
24	-56.9	27.7	-67.9	9.99	0.34	-	9.5×10 ⁻⁶	1.8×10 ⁻⁴

Table S1 Thermal property, ionic conductivity, and VTF fitting parameters of the INSPM-60/LiTFSI electrolytes

A is a pre-factor that is often related to the number and mobility of charge carriers, E_a is the activation energy

Table 52 comparison of the electroenennear performance based on solid-sate electrolytes.								
Reference	Ionic	The initial	Test condition	Electrolyte				
	conductivity	discharge capacity						
	$(S \text{ cm}^{-1})$	$(mAh g^{-1})$						
1	$2.5 imes 10^{-5}$	120-130/ 0.05C	30 °C	PEC-LiFSI				
2	$2.2 imes 10^{-4}$	141/0.5C	25 °C	ipn-PEA/LiPF ₆				
3	\sim 1.4 \times 10 ⁻³	\sim 140 /0.2C	25 °C	PEM/SCN/LiTFSI				
4	$\sim \! 10$ -5	160/0.1C	70 °C	TBP-3/LiTFSI				
5	1.1×10^{-4}	137.1/0.5C	25 °C	SPEM/LiTFSI				
6	4.0×10^{-4}	/	25 °C	PTL-3/LiTFSI				
This work	5.6×10 ⁻⁵	156.2/0.1C	60 °C	INSPM-60/LiTFSI				

Table S2 Comparison of the electrochemical performance based on solid-sate electrolytes

All the batteries were assembled with lithium metal as anode and LiFePO₄ as cathode.

Supplementary References

- 1. K. Kimura, M. Yajima and Y. Tominaga, *Electrochemistry Communications*, 2016, 66, 46-48.
- 2. X.-X. Zeng, Y.-X. Yin, N.-W. Li, W.-C. Du, Y.-G. Guo and L.-J. Wan, Journal of the American Chemical Society, 2016, 138, 15825-15828.
- 3. R. He, M. Echeverri, D. Ward, Y. Zhu and T. Kyu, Journal of Membrane Science, 2016, 498, 208-217.
- 4. J. R. Nair, M. Destro, F. Bella, G. B. Appetecchi and C. Gerbaldi, Journal of Power Sources, 2016, 306, 258-267.
- 5. J. Zhang, C. Ma, J. Liu, L. Chen, A. Pan and W. Wei, Journal of Membrane Science, 2016, 509, 138-148.
- 6. L. Porcarelli, C. Gerbaldi, F. Bella and J. R. Nair, Scientific Reports, 2016, 6.