Interface-Engineered Hematite Nanocones as Binder-Free Electrode for High-Performance

Lithium-Ion Batteries

Lei Wang,^{a,†} Kun Liang,^{b,†} Guanzhi Wang,^b and Yang Yang ^{b*}

^{*a.*}State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering

Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, 730000 Lanzhou, China.

^b.NanoScience Technology Center, Department of Materials Science & Engineering, University

of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, United States. E-mail:

Yang.Yang@ucf.edu

†The authors contributed equally to this work.

Figure S1. TEM image of Fe₂O₃ NCs with a knoblike structure on the surface.

Figure S2. The first two discharge/charge cycling profiles of NCs and NFs at a current density of 0.125 A g⁻¹.

Figure S3. Rate performance.

Figure S4. Electrochemical performance of NFs electrode. (a) Charge-discharge profiles at different current densities. (b) Rate performance. (c) Long-term cyclability at a current density of 5 A g^{-1} .

Figure S5. SEM image of NCs electrode after long-term cycling test.

Figure S6. Equivalent electric circuit. The interception at the real axis in the high-frequency area means solution resistance (R_s), which reflects the total resistance between electrolyte and electrode. The diameter of the semicircle or quasi-semicircle in medium frequency combines two resistances, involving Li-ion migration resistance (R_{sf}) and charge-transfer resistance (R_{ct}). The straight line in the low-frequency region represents the Warburg impedance (Z_w), corresponding to Lithium-ion diffusion in the solid.

Anode materials	Current	Specific	Areal	Volumetric	Reference
	density	capacity	capacity	capacity	
		$(mAh g^{-1})$	$(mAh cm^{-2})$	$(mAh cm^{-3})$	
α -Fe ₂ O ₃ NCs	0.125 A g ⁻¹	968	0.774	3872	This work
Fe ₂ O ₃ /Fe ₃ C-graphene	50 µA cm ⁻²	-	0.427	3560	1
α-Fe ₂ O ₃ nanoflakes	68 mA g ⁻¹	680±20	-	-	2
α -Fe ₂ O ₃ @CNF	50 mA g ⁻¹	604	-	-	3
Fe ₂ O ₃ -C	1.0 A g ⁻¹	812	-	-	4
Fe ₂ O ₃ @PANI	0.1 C	893	-	-	5
Graphene- Fe ₂ O ₃	160 mA g ⁻¹	660	-	-	6
Fe ₂ O ₃ nanorod-C	0.2 C	758	-	-	7
α-Fe ₂ O ₃ -C	0.2 C	688	-	-	8
α -Fe ₂ O ₃	1C	-	0.3831	-	9
C- α -Fe ₂ O ₃	5.04 A g ⁻¹	420	0.557	-	10
Fe_2O_3	270 mA g ⁻¹	-	-	570	11
Fe ₂ O ₃ -graphite	200 mA g ⁻¹	-	-	1014	12
Fe_2O_3 NPs	50 μA cm ⁻²	-	-	800	13

Table S1. Comparison with the state-of-the-art Fe_2O_3 anodes.

Reference

 Yang, Y.; Fan, X.; Casillas, G.; Peng, Z.; Ruan, G.; Wang, G.; Yacaman, M. J.; Tour, J.
 M., Three-Dimensional Nanoporous Fe₂O₃/Fe₃C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries. *ACS Nano* 2014, *8* (4), 3939-3946.

Reddy, M.; Yu, T.; Sow, C.-H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G.; Chowdari, B., α-Fe₂O₃ nanoflakes as an anode material for Li-ion batteries. *Advanced Functional Materials* 2007, *17* (15), 2792-2799.

3. Ji, L.; Toprakci, O.; Alcoutlabi, M.; Yao, Y.; Li, Y.; Zhang, S.; Guo, B.; Lin, Z.; Zhang, X., α-Fe₂O₃ nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. *ACS Applied Materials & Interfaces* **2012**, *4* (5), 2672-2679.

4. Cho, J. S.; Hong, Y. J.; Kang, Y. C., Design and synthesis of bubble-nanorod-structured Fe₂O₃-carbon nanofibers as advanced anode material for Li-ion batteries. *ACS Nano* **2015**, *9* (4), 4026-4035.

5. Jeong, J. M.; Choi, B. G.; Lee, S. C.; Lee, K. G.; Chang, S. J.; Han, Y. K.; Lee, Y. B.; Lee, H. U.; Kwon, S.; Lee, G., Hierarchical hollow spheres of Fe₂O₃@polyaniline for lithium ion battery anodes. *Advanced Materials* **2013**, *25* (43), 6250-6255.

6. Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M., Graphene/metal oxide composite electrode materials for energy storage. *Nano Energy* **2012**, *1* (1), 107-131.

7. Liu, Z.; Tay, S. W., Direct growth Fe₂O₃ nanorods on carbon fibers as anode materials for lithium ion batteries. *Materials Letters* **2012**, *72*, 74-77.

8. Cheng, F.; Huang, K.; Liu, S.; Liu, J.; Deng, R., Surfactant carbonization to synthesize pseudocubic α -Fe₂O₃/C nanocomposite and its electrochemical performance in lithium-ion batteries. *Electrochimica Acta* **2011**, *56* (16), 5593-5598.

Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H., 3D Hierarchical Porous α-Fe₂O₃ Nanosheets for High-Performance Lithium-Ion Batteries. *Advanced Energy Materials* 2015, 5 (4).

10. Brandt, A.; Balducci, A., Ferrocene as precursor for carbon-coated α -Fe₂O₃ nanoparticles for rechargeable lithium batteries. *Journal of Power Sources* **2013**, *230*, 44-49.

11. Wang, L.; Xu, H.; Chen, P.; Zhang, D.; Ding, C.; Chen, C., Electrostatic spray deposition of porous Fe₂O₃ thin films as anode material with improved electrochemical performance for lithium–ion batteries. *Journal of Power Sources* **2009**, *193* (2), 846-850.

12. Wang, Y.; Yang, L.; Hu, R.; Ouyang, L.; Zhu, M., Facile synthesis of Fe₂O₃-graphite composite with stable electrochemical performance as anode material for lithium ion batteries. *Electrochimica Acta* **2014**, *125*, 421-426.

Yang, Y.; Peng, Z.; Wang, G.; Ruan, G.; Fan, X.; Li, L.; Fei, H.; Hauge, R. H.; Tour, J.
M., Three-dimensional thin film for lithium-ion batteries and supercapacitors. *ACS Nano* 2014, *8* (7), 7279-7287.