electronic supplementary information for

Self-Supported Hierarchical CuO_x@Co₃O₄ Heterostructures as Efficient Bifunctional Electrocatalyst for Water Splitting

Qianqian Zhou,^a Ting-Ting Li,^{*,a} Jinjie Qian,^b Yue Hu,^b Fenya Guo,^a Yue-Qing Zheng^{*,a}

^aResearch Center of Applied Solid State Chemistry, Chemistry Institute for Synthesis and Green Application, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, P. R. China.

^bCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.

Corresponding Author* Tel: +86-574-87600792 Email: litingting@nbu.edu.cn (T.-T. Li); zhengyueqing@nbu.edu.cn (Y.-Q. Zheng).

Fig. S1 XRD pattern of Cu(OH)₂ NRs/CF.

Fig. S2 XRD pattern of Cu(OH)₂@Co₂CO₃(OH)₂ NRs scraped off from the CF substrate.

Fig. S3 XRD pattern of CuO_x NRs/CF.

Fig. S4 The XRD pattern of Co₃O₄/CF.

Fig. S5 Partial magnified SEM image of $CuO_x@Co_3O_4$ NRs.

Fig. S6 The EDX spectrum of $CuO_x@Co_3O_4$ NRs.

Fig. S7 High resolution XPS spectra for Co 2p regions in $CuO_x@Co_3O_4$ NRs/CF (blue line) and pure Co_3O_4 (black line).

Fig. S8 CV scans for $CuO_x@Co_3O_4$ NRs/CF under various scan rates (10 to 30 mV s⁻¹) in the non-Faradaic potential range (0.10 ~ 0.20 V vs Ag/AgCl).

Fig. S9 CV scans for CuO_x NRs/CF under various scan rates (10 to 30 mV s⁻¹) in the non-Faradaic potential range ($0.10 \sim 0.20$ V vs Ag/AgCl).

Fig. S10 C_{dl} plot for $CuO_x@Co_3O_4$ NRs/CF and CuO_x NRs/CF derived from current densities at 1.16 V vs RHE against the scan rates.

Fig. S11 Chronopotentiometry for $CuO_x@Co_3O_4$ NRs/CF and CuO_x NRs/CF fixed at a current density of 50 mA cm⁻² in 1.0 M KOH solution.

Fig. S12 The amount of theoretically calculated and experimentally measured O_2 versus the electrolysis time for $CuO_x@Co_3O_4$ NRs/CF.

Fig. S13 Polarization plots of $CuO_x@Co_3O_4$ NRs/CF for HER by using Pt foil or graphite rod as the counter electrode, respectively.

Fig. S14 The amount of theoretically calculated and experimentally measured H_2 versus the electrolysis time for CuO_x@Co₃O₄ NRs/CF.

Fig. S15 The SEM images of $CuO_x@Co_3O_4$ NRs/CF after 24 h OER.

Fig. S16 The SEM images of CuO_x@Co₃O₄ NRs/CF after 24 h HER.

Fig. S17 The comparison of XRD patterns for $CuO_x@Co_3O_4$ NRs/CF before and after 24 h OER and HER.

Fig. S18 The comparison of high resolution XPS spectra of Cu 2p before and after 24 h OER and HER.

Fig. S19 The comparison of high resolution XPS spectra of Co 2p before and after 24 h OER and HER.

Fig. S20 The comparison of high resolution XPS spectra of O 1s before and after 24 h OER and HER.

Sample	electrolyte	j (mA cm ⁻²)	η (mV)	Tafel slope (mV dec ⁻¹)	Reference
CuOx@Co3O4 NRs/CF	1 M KOH	50	240	46	This work
CuO/Co ₃ O ₄	1 M KOH	10	227	_	S 1
CuO/Fe-Co ₃ O ₄	1 M KOH	10	232	_	S2
Cu/Cu ₂ O/CuO	1 M NaOH	10	290	64	S 3
Fe(OH) ₃ :Cu(OH) ₂	1 M KOH	10	365	42	S 4
CuO nanosheet bundles	1 M KOH	10	350	59	S 5
Cu(OH) ₂ @NiFe-LDH	1 M KOH	10	283	88	S 6
Annealed CuO	1 M KOH	1.0	430	61.4	S 7
NiFeO _x /CuO	1 M KOH	100	300	36	S 8
NiFe/Cu ₂ O NWs/CF	1 M KOH	10	215	42	S 9
MWCNT-CuO-400	1 M KOH	10	420	59.9	S10
CuO-TCNQ/CF	1 M KOH	25	317	85	S11
CuO nanowire@Co3O4 nanosheet	1 M KOH	10	~258	72	S 13
CuO NSDs/CF	1 M KOH	10	370	41	S14
NiFe-LDH/CuO NRs/CF	1 M KOH	50	290	60	S15

Table S1. Comparison of OER activity from different catalysts.

Table S2. Comparison of HER activity from different catalysts.

Sample	electrolyte	j	η	Tafel slope	Reference
		$(mA cm^{-2})$	(mV)	$(mV dec^{-1})$	
CuOx@Co3O4 NRs/CF	1 M KOH	50	242	69	This work
Cu _{0.3} Co _{2.7} P/NC	1 M KOH	10	220	122	S16
Cu ₃ P/CF	1 M KOH	20	447	124	S17
Cu NDs/Ni ₃ S ₂ NTs-CFs	1 M KOH	10	128	76.2	S18
Cu@NC NT/CF	1 M KOH	10	123	63	S19
Cu@CoFe	1 M KOH	10	171	36.4	S20
Co ₂ B/CoSe ₂	1 M KOH	10	300	76	S21
NiFe-NCs	1 M KOH	10	197	130	S22
NiFeOF	1 M NaOH	10	253	96	S23

Reference

[S1] X. Li, G. Guan, X. Du, J. Cao, X. Hao, X. Ma, A.D. Jagadale and A. Abudula, *Chem. Commun.*, 2015, **51**, 15012–15014.

[S2] X. Li, C. Li, A. Yoshida, X. Hao, Z. Zuo, Z. Wang, A. Abudula and G. Guan, J. Mater. Chem. A, 2017, 5, 21740–21749.

[S3] T. N. Huan, G. Rousse, S. Zanna, I. T. Lucas, X. Xu, N. Menguy, V. Mougel and M. Fontecave, Angew. Chem. Int. Ed., 2017, 56, 4792–4796.

[S4] C. C. Hou, C. J. Wang, Q. Q. Chen, X. J. Lv, W. F. Fu and Y. Chen, *Chem. Commun.*, 2016, 52, 14470–14473.

[S5] N. Cheng, Y. Xue, Q. Liu, J. Tian, L. Zhang, A.M. Asiri, X. Sun, Electrochim. Acta, 2015, 163, 102–106.

[S6] X. Ma, X. Li, A. D. Jagadale, X. Hao, A. Abudula and G. Guan, Int. J. Hydrogen Energy, 2016, 41, 14553–14561.

[S7] X. Liu, S. Cui, Z. Sun, Y. Ren, X. Zhang and P. Du, J. Phys. Chem. C, 2016, 120, 831-840.

[S8] S. Czioska, J. Wang, S. Zuo, X. Teng and Z. Chen, ChemCatChem, 2018, 10, 1005–1011.

[S9] H. Chen, Y. Gao and L. Sun, *ChemSusChem*, 2017, **10**, 1475–1481.

[S10] A. Chinnappan, D. Ji, C. Baskar, X. Qin and S. Ramakrishna, J. Alloys Compd., 2018, 735, 2311–2317.

[S11] X. Ren, X. Ji, Y Wei, D Wu, Y. Zhang, M. Ma, Z. Liu, A. M. Asiri, Q. Wei and X. Sun, *Chem. Commun.*, 2018, 54, 1425–1428.

[S13] X. Li, X. Du, X. Ma, Z. Wang, X. Hao, A. Abudula, A. Yoshida and G. Guan, *Electrochim. Acta*, 2017, 250, 77–83.

[S14] Q. Zhou, T.-T. Li, W. Xu, H.-L. Zhu and Y.-Q. Zheng, J Mater Sci., 2018, 53, 8141–8150.

[S15] Q. Zhou, T.-T. Li, J. Qian, W. Xu, Y. Hu and Y.-Q. Zheng, ACS Appl. Energy Mater., 2018, 1, 1364–1373.

[S16] J. Song, C. Zhu, B.Z. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman and Y. Lin, Adv. Energy Mater., 2017, 7, 1601555.

[S17] C. Lu, J. Wang, S. Czioska, H. Dong and Z. Chen, J. Phys. Chem. C, 2017, 121, 25875–25881.

- [S18] J.-X. Feng, J.-Q. Wu, Y.-X. Tong and G.-R. Li, J. Am. Chem. Soc., 2018, 140, 610–617.
- [S19] Y. Zhang, Y. Ma, Y.-Y. Chen, L. Zhao, L.-B. Huang, H. Luo, W.-J. Jiang, X. Zhang, S. Niu,
- D. Gao, J. Bi, G. Fan and J.-S. Hu, ACS Appl. Mater. Interfaces, 2017, 9, 36857-36864.
- [S20] L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen and Z. Ren, *Nano Energy*, 2017, **41**, 327–336.
- [S21] Y. Guo, Z. Yao, C. Shang and E. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 39312–39317.
- [S22] A. Kumar and S. Bhattacharyya, ACS Appl. Mater. Interfaces, 2017, 9, 41906–41915.
- [S23] K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang, D. E. Perea, L. Zhou, Y. Du and Y. Yang, ACS Catal., 2017, 7, 8406–8412.