## **Supporting Information**

## Plasmonic Metal/Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-v</sub> for visible-light-enhanced H<sub>2</sub>

## production from ammonia borane

Haibo Yin,<sup>a</sup> Yasutaka Kuwahara,<sup>ab</sup> Kohsuke Mori,<sup>abc</sup> Hiromi Yamashita<sup>ab</sup>

<sup>a</sup> Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.
<sup>b</sup> Unit of Elements Strategy Initiative for Catalyst & Batteries (ESICB), Kyoto University, Kyoto, 615-8245, Japan.
<sup>c</sup> JST, PRESTO, 4-1-8 HonCho, Kawaguchi, Saitama, 332-0012, Japan.
\*Corresponding Author E-mail: yamashita@mat.eng.osaka-u.ac.jp



Scheme S1. Schematic illustration of the synthesis procedure of the  $Pd/Mo_xW_{1-x}O_{3-y}$  hybrid.



Fig. S1. XRD pattern of a) as-synthesized  $Mo_xW_{1-x}O_{3-y}$ , b)  $Pd/Mo_xW_{1-x}O_{3-y}$ , c)  $Mo_xW_{1-x}O_{3-y}$ -NaBH<sub>4</sub> and  $Pd/MoO_{3-x}$  hybrid, respectively. d) UV-Vis-NIR diffuse reflectance spectra of as-synthesized  $Mo_xW_{1-x}O_{3-y}$ .



**Fig. S2.** Raman spectra of a)  $Pd/Mo_xW_{1-x}O_{3-y}$  and  $Mo_xW_{1-x}O_{3-y}$ -NaBH<sub>4</sub>, b) commercial MoO<sub>3</sub> and commercial WO<sub>3</sub>, respectively.

For commercial MoO<sub>3</sub>, the vibration modes appearing in the frequency ranges of 200-600 cm<sup>-1</sup> and 600-1000 cm<sup>-1</sup> correspond to the deformation and stretching in Figure S3, respectively. The narrow band at 995 cm<sup>-1</sup> and the strong band (819 cm<sup>-1</sup>) are assignable to the antisymmetric v (Mo = O<sub>1</sub>) and the symmetric v (Mo-O<sub>1</sub>-Mo) stretching, respectively. The weak and broad bands at 664 and 470 cm<sup>-1</sup> are ascribable to the antisymmetric v (Mo-O<sub>2</sub>-Mo) stretching and bending, respectively [1]. For commercial WO<sub>3</sub>, the two main intense peaks at 806 and 715 cm<sup>-1</sup> correspond to the stretching and bending vibrations of the bridging tungsten and oxygen atoms, which are assigned to the W-O stretching, W-O bending and O-W-O deformation modes, respectively [2].

| Commercial MoO <sub>3</sub>                                          |                   |                    |                 | Commercial WO <sub>3</sub> |                      |                    |
|----------------------------------------------------------------------|-------------------|--------------------|-----------------|----------------------------|----------------------|--------------------|
| Location (cm <sup>-1</sup> )                                         | Mo-O Bond         | Type Bon           | d Length<br>(Å) | Location (cm <sup>-</sup>  | W-O Bond Type        | Bond Length<br>(Å) |
| 664.15                                                               | Equatorial        |                    | .8826           | 715.09                     | Equatorial           | 1.8857             |
| 818.87                                                               | Apical            |                    | .7815           | 805.66                     | Apical               | 1.8230             |
| 995.28                                                               | Apical            | l 1                | .6874           |                            |                      |                    |
| Mo <sub>x</sub> W <sub>1-x</sub> O <sub>3-y</sub> -NaBH <sub>4</sub> |                   |                    |                 |                            |                      |                    |
| Location<br>(cm <sup>-1</sup> )                                      | Mo-O Bond<br>Type | Bond<br>Length (Å) | Variatio<br>(Å) | n W-O Bon<br>Type          | d Bond Length<br>(Å) | Variation (Å)      |
| 703.16                                                               | Equatorial        | 1.8550             | 0.0276          | Equatoria                  | ıl 1.8945            | 0.0088             |
| 819.59                                                               | Apical            | 1.7811             | 0.0004          | Apical                     | 1.7259               | 0.0971             |
| 969.01                                                               | Apical            | 1.7003             | 0.0129          |                            |                      |                    |
| Pd/Mo <sub>x</sub> W <sub>1-x</sub> O <sub>3-y</sub>                 |                   |                    |                 |                            |                      |                    |
| Location<br>(cm <sup>-1</sup> )                                      | Mo-O Bond<br>Type | Bond<br>Length (Å) | Variatio<br>(Å) | n W-O Bon<br>Type          | d Bond Length<br>(Å) | Variation (Å)      |
| 696.88                                                               | Equatorial        | 1.8593             | 0.0233          | Equatoria                  | ıl 1.8993            | 0.0136             |
| 817.52                                                               | Apical            | 1.7823             | 0.0008          | Apical                     | 1.8153               | 0.0077             |
| 969.01                                                               | Apical            | 1.7003             | 0.0129          |                            |                      |                    |

**Table S1**. Calculated Mo-O and W-O bond length of commercial MoO<sub>3</sub>, commercial $WO_3$ ,  $Mo_xW_{1-x}O_{3-y}$  -NaBH<sub>4</sub>, and Pd/Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-y</sub>.



Fig. S3. a) W 4f and b) Mo 3d XPS spectra of as-synthesized  $Mo_xW_{1-x}O_{3-y}$ .



Fig. S4.  $H_2$  TPR plots of Pd/Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-y</sub>, Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-y</sub>-NaBH<sub>4</sub> and as-synthesized Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-y</sub>.



Fig. S5. XRD patterns of a) Au/Mo<sub>x</sub> $W_{1-x}O_{3-y}$ , Mo<sub>x</sub> $W_{1-x}O_{3-y}$ -NaBH<sub>4</sub>, b) Pt/Mo<sub>x</sub> $W_{1-x}O_{3-y}$  and Mo<sub>x</sub> $W_{1-x}O_{3-y}$ -NaBH<sub>4</sub> hybrid, respectively.



**Fig. S6**. a) Mo 3d, b) W 4f XPS spectra of the Au/Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-y</sub>. c) Mo 3d, b) W 4f XPS spectra of the Pt/Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-y</sub>.



Fig. S7. NH<sub>3</sub>-TPD profiles of Pd/Mo<sub>x</sub>W<sub>1-x</sub>O<sub>3-y</sub>, Pd/MoO<sub>3-x</sub>, and as-synthesized  $Mo_xW_{1-x}O_{3-y}$ .



Fig. S8. a) XRD patterns, b) UV-Vis-NIR diffuse reflectance spectra of fresh prepared and reused  $Pd/Mo_xW_{1-x}O_{3-y}$  sample after the recycling  $NH_3BH_3$  dehydrogenation experiments.



**Fig. S9**. Comparison of  $H_2$  generation from  $NH_3BH_3$  hydrolysis over a)  $Au/Mo_xW_1$ .  $_xO_{3-y}$  and b)  $Pt/Mo_xW_{1-x}O_{3-y}$  hybrids.



Fig. S10. a) Pd 3d, b) W 4f, c) Mo 3d XPS spectra of the  $Pd/Mo_xW_{1-x}O_{3-y}(PVP)$ .



Fig. S11. FT-IR spectra of PVP,  $Pd/Mo_xW_{1-x}O_{3-y}$  hybrids prepared with and without PVP molecules.

M. Alsaif, K. Latham, M. Field, D. Yao, N. Medehkar, G. Beane, R. Kaner, S. Russo, J. Ou, K. Kalantar-zadeh, Adv. Mater. 26 (2014) 3931-3937.
 T. Brezesinski, J. Wang, S. Tolbert, B. Dunn, Nature Mater. 9 (2010) 146-151.