Supporting Information for

Co-doped Ni₃S₂@CNTs Array Anchored on Graphite Foam with Hierarchical Conductive Network for High-Performance Supercapacitor and Hydrogen Evolution Electrode

Feifei Wang,^a Yanfang Zhu,^a Wen Tian,^a Xingbin Lv,^a Hualian Zhang,^a Zhufeng Hu,^a Yuxin Zhang,^b Junyi Ji,^{a, c,*} and Wei Jiang^a

^a School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China

^b College of Material Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China

^c State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China

* Corresponding author. Junyi Ji,

E-mail:

junyiji@scu.edu.cn

Figure S1 XRD patterns of NiCo-LDH@CNTs/GNF and the NiCo-LDH powder, respectively.

As shown in the figure, the peaks of collected NiCo-LDH powder show obvious specific peaks compared with that of the NiCo-LDH@CNTs/GNF, which may be due to the relatively low loading mass of the NiCo-LDH on the CNTs/GNF struts. Moreover, the peaks located at 22.7°, 33.4°, 34.7° can be correlated with (003), (021) and (101) planes of nickel hydroxide (JCPDS 38-0715), while at 36.3°, 55.9°, 65.2° corresponding to (100), (104) and (110) planes of cobalt hydroxide (JCPDS 26-1107). All of the above results verify the formation of NiCo-LDH composites.

Figure S2. SEM images of a), b) the NiCo-LDH /GNF composites and c), d) Co-Ni $_3S_2$ /GNF composites.

Figure S3 The XRD patterns of the Co-Ni $_3S_2$ @CNTs/GNF sample after cycling test.

Figure S4 SEM images of a), b) and c) EDS images of the Co-Ni $_3S_2$ @CNT/GNF composites after long cycling test.

Figure S5 a) LSV curves and b) Tafel curves of NiCo-LDH@CNTs/GNF, NiCo-LDH/GNF and GNF scaffold.

The OER activity of the NiCo-LDH@CNTs/GNF and NiCo-LDH/GNF are also tested, respectively, to further investigate the role of the conductive CNTs array structure (**Figure S5**). As shown in the figures, the LSV curve and the corresponding Tafel curve of the NiCo-LDH@CNTs/GNF composite can also achieve better electrocatalytic activity than that of the NiCo-LDH/GNF and GNF scaffold, which may be due to the increased electron transfer rate.

Table S1 The peak area and the area ratio of the Co/Ni ions with different valence statescalculated by the deconvolution of the Co 2p and Ni 2p peaks of the Co- $Ni_3S_2@CNTs/GNF$ electrodes.

		Co(3+)	Co(2+)	Co(3+)/Co(2+)	Ni(3+)	Ni(2+)	Ni(3+)/Ni(2+)
Co-Ni ₃ S ₂	Peak 2p3/2	4481.11	15975.27	0.28	42889.90	22012.94	1.95
Area	2p1/2	2601.53	6084.67	0.43	18706.90	9332.31	2.00