Ambient-Air-Stable Inorganic Cs₂SnI₆ Double Perovskite Thin Films via Aerosol-Assisted Chemical Vapour Deposition

Jack Chun-Ren Ke, David J. Lewis, Alex S. Walton, Ben F. Spencer, Paul O'Brien

Andrew G. Thomas* and Wendy R. Flavell*

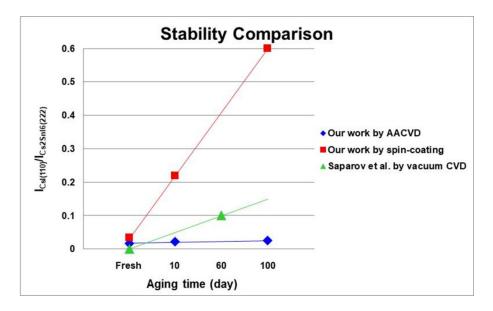
Electronic Supplementary Information†

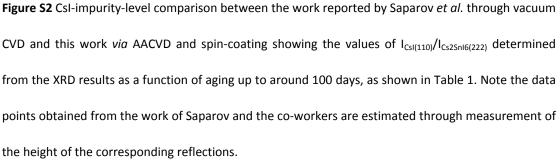
Peeling and scratching tests for adhesion to the substrate.

In order to evaluate adherence between Cs_2SnI_6 film and ITO-glass substrate, we conducted sticking and scratching tests for films fabricated by AACVD and spin coating. The sticking test was carried out using adhesive tape of width of 1 cm. This was fastened to the films and then peeled off rapidly. For the scratching test, a needle was used to scratch the films by moderate force.

(A)

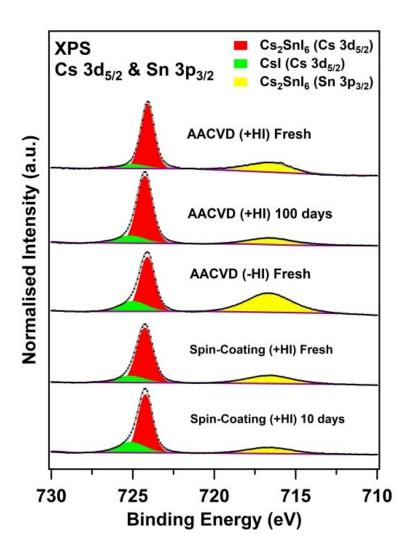
(B)


(C)



(D)

Figure S1 Photographs of Cs_2Snl_6 films fabricated *via* AACVD (A&B) and spin coating (C&D). A shows the as fabricated AACVD film and B following the peel and scratch tests. C and D are equivalent tests


for the spin-coated film. It is clear that the AACVD-grown film shows very little change following the scratch and peel tests. The tape remains clear of black powder and no line can be seen on the substrate following scratching. The spin coated film, on the other hand, shows significant removal by both the tape and scratching.

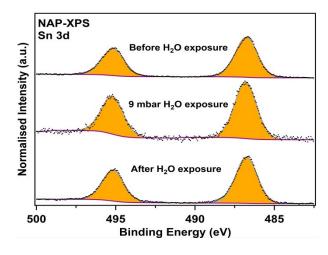
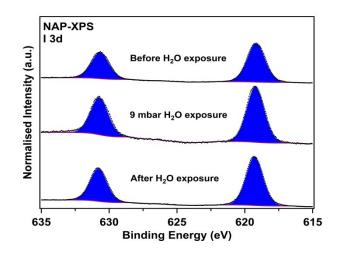
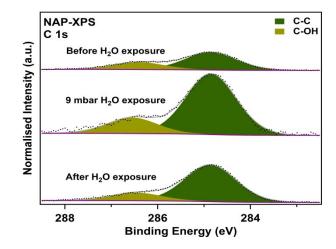
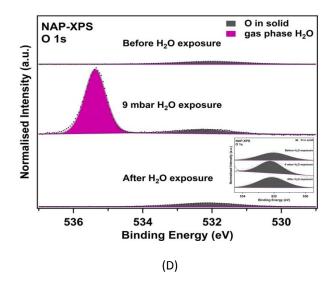
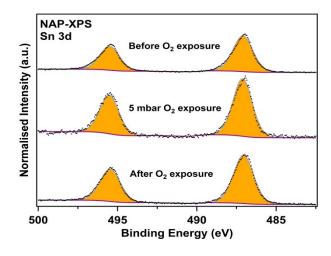


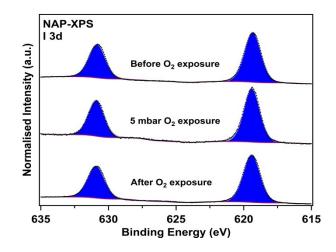
Table S1 Quantified atomic concentrations of various elements from the XPS spectra of Cs 3d (Figure 5), Sn $3p_{3/2}$ (Figure S3), and I 3d core levels. All elemental concentrations are normalised to [Cs] = 2.0 as in the ideal stoichiometry Cs₂SnI₆. Excess Sn (excess I) refers to the amount of Sn (I) that cannot be accounted for in the Cs₂SnI₆ (Cs₂SnI₆+CsI) phase(s).

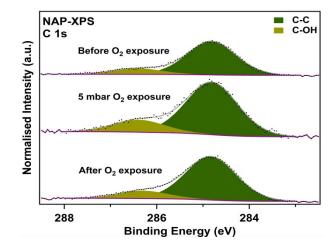

Sample ID	Total Cs	Cs	Cs	Sn	I	Excess	Excess
		in Csl	in Cs ₂ Snl ₆			Sn	I
Ideal	_	_	2.0	1.0	6.0	0.0	0.0
stoichiometry			2.0	1.0	0.0	0.0	0.0
AACVD (+HI)	22402	0.2 + 0.1	20102	4.1 + 0.4	10.2 + 1.0	21.02	11.0 + 1.2
fresh	2.3 ± 0.2	0.3 ± 0.1	2.0 ± 0.2	4.1 ± 0.4	18.2 ± 1.8	3.1 ± 0.3	11.9 ± 1.2
AACVD (+HI)	24102	0.4 + 0.4	20102			12101	0.4 + 0.4
100 days	2.4 ± 0.2	0.4 ± 0.1	2.0 ± 0.2	2.3 ± 0.2	6.8 ± 0.7	1.3 ± 0.1	0.4 ± 0.1
AACVD (-HI)	27.02	07.04				70.00	25.02
fresh	2.7 ± 0.3	0.7 ± 0.1	2.0 ± 0.2	8.9 ± 0.9	9.2 ± 0.9	7.9 ± 0.8	2.5 ± 0.3
Spin-coated	24102	0.4 + 0.4	20102	24+02	7.2.4.0.7	24+02	0.0 + 0.4
(+HI) fresh	2.4 ± 0.2	0.4 ± 0.1	2.0 ± 0.2	3.4 ± 0.3	7.2 ± 0.7	2.4 ± 0.2	0.8 ± 0.1
Spin-coated	27102	07104	20102	20102	72407	10102	05.01
(+HI) 10 days	2.7 ± 0.3	0.7 ± 0.1	2.0 ± 0.2	2.8 ± 0.3	7.2 ± 0.7	1.8 ± 0.2	0.5 ± 0.1


Figure S3 Sn $3p_{3/2}$ with Cs $3d_{5/2}$ core-level XPS spectra of various films prepared by AACVD or spincoating. All spectra are normalised to the Cs $3d_{5/2}$ area for comparison of the relative concentrations of atomic Sn.


(A)


(B)


(C)


Figure S4(A) Sn 3d, (B) I 3d, (C) C 1s, and (D) O 1s core-level NAP-XPS spectra of AACVD (+HI)-grown film, recorded before, during, and after exposure to 9 mbar H_2O vapour. All spectra are normalised to the relevant Cs $3d_{5/2}$ area for comparison.

(A)

(B)

(C)

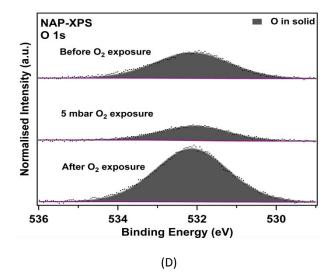


Figure S5 (A) Sn 3d, (B) I 3d, (C) C 1s, and (D) O 1s core-level NAP-XPS spectra of AACVD (+HI)-grown film, recorded before, during, and after exposure to 5 mbar O_2 . All spectra are normalised to the relevant Cs $3d_{5/2}$ area for comparison.

Table S2 Quantified atomic concentrations of C–O (BE: 286.3 \pm 0.1 eV) from the C 1s NAP-XPS spectra and O–C (BE: 532.1 \pm 0.1 eV) from the O 1s NAP-XPS spectra of AACVD (+HI)-grown films. All elements are normalised to Cs (using [Cs] = 2.0), consistent with Tables 1&2. Spectra were measured under UHV conditions before and after exposure to water or O₂.

Fresh AACVD (+HI)	C-0	0–C	
UHV before H ₂ O exposure	15.8 ± 1.6	12.0 ± 1.2	
UHV after H ₂ O exposure	26.5 ± 2.7	16.1 ± 1.6	
UHV before O ₂ exposure	5.4 ± 0.5	4.7 ± 0.5	
UHV after O ₂ exposure	9.2 ± 0.9	9.2 ± 0.9	