Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

## **Electronic Supplementary Information**

## A flexible, electrochromic, rechargeable Zn//PPy battery with short circuit chromatic warning function

Jiaqi Wang, <sup>ab</sup> Jie Liu, <sup>ab</sup> Mengmeng Hu, <sup>ab</sup> Jie Zeng, <sup>a</sup> Yongbiao Mu, <sup>a</sup> Ya Guo, <sup>a</sup> Jie Yu, <sup>a</sup> Xing Ma, <sup>a</sup> Yejun Qiu, <sup>a</sup> Yan Huang, <sup>abc\*</sup>

<sup>&</sup>lt;sup>a</sup>Centre of Flexible and Printable Electronics, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

<sup>&</sup>lt;sup>b</sup>School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

<sup>&</sup>lt;sup>c</sup>State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. e-mail: yanhuanglib@hit.edu.cn.

## **Figures**

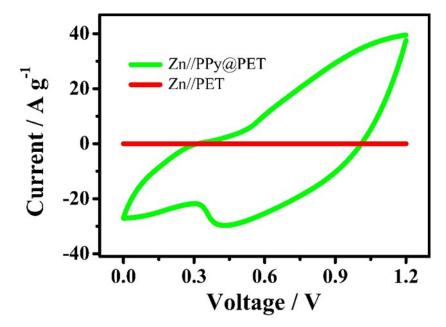



Fig. S1. The CV curves of the PET with and without deposited PPy at a scan rate of  $100 \text{ mV s}^{-1}$ .

The CV curve of PET without deposited PPy is a straight line. The conductive PET has no contribution to the capacity of Zn//PPy battery.

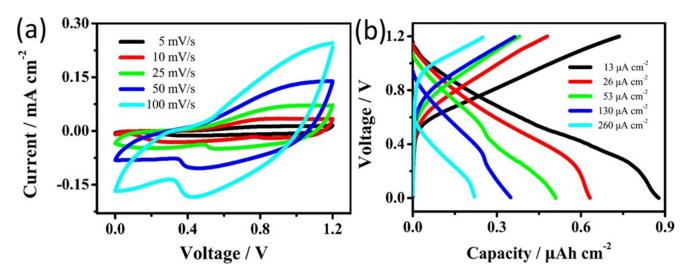



Fig. S2. Electrochemical performances of the rechargeable and flexible Zn// PPy battery in terms of areal capacity. (a) CV curves at various scan rates from 5 to 100 mV s<sup>-1</sup>. (b) GCD curves at various charging/discharging currents from 13 to 260  $\mu$ A cm<sup>-2</sup>.

The two-dimentional battery delivers areal capacity of 0.9  $\mu Ah$  cm<sup>-2</sup> at the current density of 13  $\mu A$  cm<sup>-2</sup>.

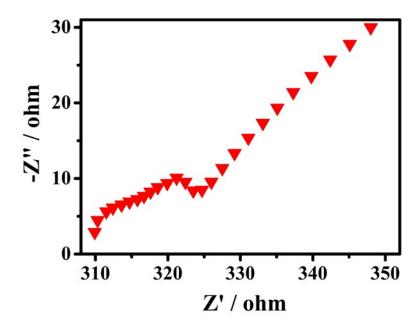
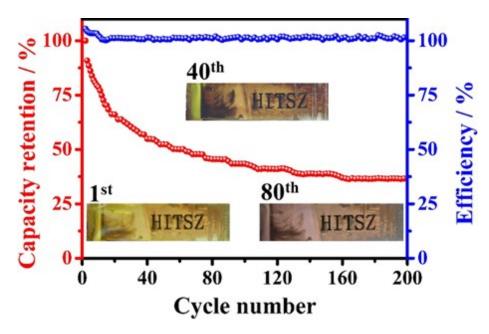




Fig. S3. The Nyquist plot of the flexible electrochromic Zn//PPy battery.

The battery has a systematic resistance about 310  $\Omega$ , and a small charge transfer resistance around 15  $\Omega$ .



**Fig. S4.** Capacity retention as a function of cycle number at specific current of 4.4 A g<sup>-1</sup> and the electrochromic effect in different cycle number at a voltage of 0 V.

The battery retains 41% and 38% of initial capacity after 100 and 200 cycles, respectively. The columbic efficiency of the battery almost retains 100%, demonstrating good performance. Besides, the battery is bright yellow in the first cycle. At the 40<sup>th</sup> cycle, the color turned weak. With the cycle further to 80<sup>th</sup>, the electrochromic process almost disappear. After that, the color keeps black.