Supporting Information

Ultrasmall MoC Nanoparticles Embedded in 3D Frameworks of Nitrogen-Doped Porous Carbon as Anode Materials for Efficient Lithium Storage with Pseudocapacitance

Xiudong Chen^{1,2†}, Li-Ping Lv^{1,†}, Weiwei Sun¹, Yiyang Hu¹, Xuechun Tao¹, Yong

Wang^{1,*}

¹School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China

²School of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun, Guizhou, P. R. China, 558000

*Corresponding authors: Tel: +86-21-66137723; fax: +86-21-66137725.

Email address: yongwang@shu.edu.cn (Y. Wang)

Fig. S1 (a) TGA curve of the precursors for synthesizing MoC-N-C-1, MoC-N-C-2 and MoC-N-C-3 in N_{2} , (b) Enlarged view marked with black boxes in (a).

Fig. S2 Nitrogen adsorption/desorption isotherms of (a) MoC-N-C-1, (b) MoC-N-C-2 and (c) MoC-N-C-3. The inset curves are the corresponding Barrett-Joyner-Halenda (BJH) pore size distribution plots.

Fig. S3 (a-d) Elemental mapping images and (e-f) the EDS spectra of MoC-N-C-2.

Fig. S4 (a, c) charge/discharge curves of MoC-N-C-1 and MoC-N-C-3 for the first three cycles at 100 mA g^{-1} . (b, d) The first three CV curves of MoC-N-C-1 and MoC-N-C-3 at a current density of 100 mA g^{-1} in the range of 0.001 ~ 3 V.

Fig. S5 Rate capability of MoC-N-C-1, MoC-N-C-2, MoC-N-C-3 obtained at various current densities from 0.1 to 5 A g^{-1} and then back to 0.1 A g^{-1} in the potential window of 0.001-3.0 V.

Fig. S6 Nyquist plots for MoC-N-C-1, MoC-N-C-2 and MoC-N-C-3 of first and after 100 cycles.

Table S1. Elemental Analysis and ICP results of MoC-N-C-1, MoC-N-C-2 and MoC-N-C-3

Sample	MoC-N-C-1	MoC-N-C-2	MoC-N-C-3
C (wt%)	81.23	79.81	74.25
N (wt%)	7.61	7.99	7.07
Mo (wt%)	10.86	12.1	18.38

Table S2. Electrochemical properties compared between MoC-N-C and previous

Composite	IRC	RRC	CN	CD	Reference
MoC-N-C-2	1138	1246	300	0.1	This work
	836	813	500	1	
	686	675	500	2	
MoC-N-C-1	986	865	300	0.1	This work
MoC-N-C-3	738	658	300	0.1	This work
α-MoC _{1-x}	800	815	200	0.5	1
	~	640	300	1	1
MoC	901	664	100	0.2	2
	~	451	3000	10	2
Mo ₂ C	~790	556	100	0.2	2
MoC/graphitic carbon	911	742	50	0.2	3
Mo ₂ C-C	1054	1197	100	0.1	
	~860	874	100	0.3	4
	~910	778	1000	1	
Mo ₂ C-C	774	673	50	0.1	
	~470	402	50	1	5
	~380	308	50	2	
Mo ₂ C/graphene	~830	813	100	0.1	6
MoC/CNF	~280	201.6	300	2	7

relative reports (IRC: initial reversible capacity, mAh g⁻¹; RRC: retained reversible capacity, mAh g⁻¹; CN: cycle number; CD: current density, A g⁻¹).

References:

1 J. M. Chen, Y. Huang, F. P. Zhao, H. L.Ye, Y. Y. Wang, J. H. Zhou, Y. P. Liu and Y. G. Li, *J. Mater. Chem. A*, 2017, **5**, 8125-8132.

2 H. Yu, H. S. Fan, J. Wang, Y. Zheng, Z. F. Dai, Y. Lu, J. H. Kong, X. Wang, Y. J. Kim, Q. Y. Yan and J. -M. Lee, *Nanoscale*, 2017, **9**, 7260-7267.

3 M. C. Li, S. C. Yu, Z. H. Chen, Z. Y. Wang, F. C. Lv, B. Nan, Y. G. Zhu, Y. Shi, W. X. Wang, S. F. Wu, H. T. Liu and Y. G. Tang, *Inorg. Chem. Front.*, 2017, **4**, 289-295.

4 Y. Xiao, L. R. Zheng and M. H. Cao, Nano Energy, 2015, 12, 152-160.

5 Q. Gao, X. Y. Zhao, Y. Xiao, D. Zhao and M. H. Cao, *Nanoscale*, 2014, 6, 6151-6157.

6 B. B. Wang, G. Wang and H. Wang, J. Mater. Chem. A, 2015, 3, 17403-17411.

7 G. -H. Lee, S. -H. Moon, M. -C. Kim, S. -J. Kim, S. j. Choi, E. -S. Kim, S. -B. Han, K. -W. Park, *Ceram. Int.*, 2018, 44, 7972-7977