Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Directed Self-Assembly Pathways of Three-dimensional Pt/Pd Nanocrystal Superlattices Electrocatalysts for

Enhanced Methanol Oxidation Reaction

Guangran Xu^a, Rui Si^c, Jiayin Liu^a, Luyao Zhang^a, Xia Gong^a, Rui Gao^{a,b,*}, Baocang Liu^{a,*}, Jun Zhang^{a,*}

^aCollege of Chemistry and Chemical Engineering & Inner Mongolia Key Lab of

Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, P.R.

China.

^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese

Academy of Sciences, Taiyuan, 030001, China. & National Energy Center for Coal to

Liquids, Synfuels China Co. Ltd, Beijing 100195, P.R. China

^cShanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics,

Chinese Academy of Sciences, Shanghai 201204, P.R. China

*Corresponding author

Email address: gaorui010@163.com (R. Gao); cebcliu@imu.edu.cn (B. Liu); cejzhang@imu.edu.cn (J. Zhang)

Samples	Pt-F	Pt	D W	$\Delta E_0 (eV)$
	R (Å)	CN	_ D. w.	
Pt foil	2.77±0.00	12	0.005±0.000	7.7±0.4
3D Pt/Pd NSLs-WPAS	2.75±0.01	8.2±1.1	0.007±0.001	8.6±1.0
3D Pt/Pd NSLs-SM	2.74±0.01	7.1±0.8	0.007±0.001	8.2±0.9

Table S1. EXAFS Fitting Results of 3D Pt/Pd NSLs-WPAS and 3D Pt/Pd NSLs-SM^a

^aR: distance; CN: coordination number; D. W.: Debye–Waller factor.

Table S2. The barriers E_a (eV), reaction energies $\Delta_r E$ (eV) and rate constant k (s⁻¹) for all the elementary reactions of the methanol oxidation reaction (MOR) on Pt₄Pd(111)-WPASA and Pt₄Pd(111)-SM surfaces.

Surface reactions	Pt ₄ Pd(111)-WPAS			Pt ₄ Pd(111)-SM		
	E_{a}	$\Delta_{\rm r} E$	k	Ea	$\Delta_{\rm r} E$	k
$CH_3OH \rightarrow CH_3O + H$	0.54	0.19	1.33×10 ³	1.18	0.26	2.50×10 ⁻⁸
$CH_3O \rightarrow CH_2O + H$	0.45	-0.31	1.40×10 ⁵	0.59	-0.41	8.92×10 ²
$CH_2O \rightarrow CHO + H$	0.56	0.25	1.44×10 ³	0.41	-0.58	3.02×10 ⁵
$CHO \rightarrow CO + H$	0.83	-0.93	3.41×10 ⁻²	0.71	-1.17	1.15×10 ¹
$\mathrm{CO} + 2\mathrm{OH} \rightarrow \mathrm{CO}_{2(g)} +$	0.51	-0.84	1.82×10 ³	0.38	-0.85	7.85×10 ⁵
H ₂ O						

Scheme S1. (A) Over-view diagram, (B) section-view diagram, and (C) inner-reactor module diagram of the Wattecs Parallel Autoclave System (WPAS). The WPAS synthetic technique holds the advantages of high temperature and high pressure and allows the constant stirring under a nitrogen and argon gas protecting atmosphere in comparison with normal solvothermal synthetic approach.¹

Fig. S1. TEM images of 3D Pt/Pd NSLs-WPAS synthesized with a theoretical molar ratio of Pt:Pd at 1:1.

Fig. S2. TEM images of 3D Pt/Pd NSLs-WPAS synthesized with a theoretical molar ratio of Pt:Pd at 1:3.

Fig. S3. The XRD patterns of (a) 3D Pt/Pd NSLs-WPAS, (b) 3D Pt/Pd NSLs-SM, (c) Pd@Pt core-shell NCs, and (d) Pt/Pd monodispersed NCs.

Fig. S4. XPS survey spectra of (a) 3D Pt/Pd NSLs-WPAS, (b) 3D Pt/Pd NSLs-SM,(c) Pd@Pt core-shell NCs, and (d) Pt-Pd monodispersed NCs.

Fig. S5. XPS spectra of (a and c) Pt 4f and (b and d) Pd 3d of (a and b) Pd@Pt coreshell NCs and (c and d) Pt/Pd monodispersed NCs.

Fig. S6. CO-stripping voltammograms over 3D Pt/Pd NSLs-WPAS, 3D Pt/Pd NSLs-SM, and the commercial Pt/C electrocatalysts in a CO-saturated 0.5 M H_2SO_4 solution at a scan rate of 50 mV s⁻¹.

Fig. S7. Electrochemical impedance spectra of different catalysts measured in N_2 -saturated 0.5 M H₂SO₄ + 1.0 M CH₃OH solution.

Fig. S8. The top and side views for (a) $Pt_4Pd(111)$ -WPAS and (b) $Pt_4Pd(111)$ -SM surfaces, as well as the adsorption structures of atomic N on the two models (c) N/WPAS and (d) N/SM (the Pt, Pd and N atoms in blue, yellow and pink, respectively).

Fig. S9. Intermediate structures and corresponding energies for elementary steps of the reaction $CO + 2OH \rightarrow CO_2 + H_2O$. TS, transition state.

References:

 G. Xu, J. Liu, B. Liu, X. Gong, S. Wang, Q. Wang and J. Zhang, *CrystEngComm*, 2017, **19**, 7322-7331.