Supporting Information

A gradual carbon doping graphitic carbon nitride towards the metal-free visible light photocatalytic hydrogen evolution

Zhou Chen[†], Tingting Fan[†], Xiang Yu[†], Qiuling Wu[†], Qiuhui Zhu[‡], Lizhong Zhang[‡], Jianhui Li[†], Weiping Fang[†], Xiaodong Yi^{*†}

 † National Engineering Laboratory for Green Chemical Productions of Alcoholsethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, P. R. China

‡ Department of Chemistry and Applied Chemistry, Changji University, Changji831100, P. R. China.

*Corresponding author: xdyi@xmu.edu.cn.

Figure S1. SEM (a, b) and TEM (c) images of C-rich $g-C_3N_4$.

Figure S2. (a) SEM and (b) TEM images of bulk- C_3N_4 .

Figure S3. XPS signals with different depth of C 1s (a), N 1s (b) for bulk-C₃N₄, C 1s (c), N 1s (d) for C-rich g-C₃N₄ and Diagram of the variation with depth of the C/N ratio for both samples.

Figure S4. XPS spectra of O 1s for bulk- C_3N_4 and C-rich g- C_3N_4 photocatalysts.

Figure S5. XPS spectra of C 1s and N 1s of (a) bulk- C_3N_4 and (b) C-rich g- C_3N_4 photocatalysts.

Figure S6. H₂ generation rate over bulk- C_3N_4 and C-rich g- C_3N_4 with 3wt% Pt as cocatalyst (300-W Xe lamp, 35 ml aqueous triethanolamine solution (10 vol %).

Figure S7. Mott-Schottky plots of bulk- C_3N_4 and C-rich g- C_3N_4 in 0.2 M Na₂SO₄ aqueous solution.

			Hydrogen generate rate (µmol h ⁻¹ g ⁻	Referenc
catalysts	Light source	Conditions	¹)	e
g-C ₃ N ₄ -10% Cu ₃ P	300W xenon lamp ($\lambda > 420$ nm	17 vol%		
)	triethanolamine	159.41	[1]
$g-C_3N_4-2\%$ acetylene -	350W xenon lamp ($\lambda > 420$ nm	10 vol%	240	[2]
2%CuS)	triethanolamine	348	
$g-C_3N_4-2\%$ Co ₂ P	300W xenon lamp ($\lambda > 420$ nm	17 vol%	178.4	[2]
)	triethanolamine	120.4	[3]
g-C₃N₄−5% H-MoSe	300W xenon lamp ($\lambda > 420 \text{ nm}$	10 vol%	136.8	[4]
)	triethanolamine	130.0	[+]
$g-C_3N_4-3\% \ Co_2P$	300W xenon lamp ($\lambda > 420 \text{ nm}$	10 vol%	53.3	[5]
)	triethanolamine		
g-C ₃ N ₄ -3.5% Ni ₂ P	300W xenon lamp ($\lambda > 420 \text{ nm}$	10 vol% triethanolamine	474 7	[6]
)		-7-17	
g-C ₃ N ₄ -5% Ni ₁₂ P ₅	300W xenon lamp ($\lambda > 420 \text{ nm}$	10 vol% triethanolamine	535 7	[7]
)		555.7	L, 1
$g-C_3N_4-0.01\%$ WS ₂	300W xenon lamp ($\lambda > 420$ nm	10 vol%	101	[8]
)	triethanolamine	101	[0]
g-C ₃ N ₄ -3.5% Ni ₃ P	300W xenon lamp ($\lambda > 400 \text{ nm}$	20 vol%	120	[0]
)	triethanolamine		[2]
g-C ₃ N ₄ -2% Ni ₂ P	300W xenon lamp ($\lambda > 400 \text{ nm}$	10 vol%	82 5	[10]
)	triethanolamine	52.5	
g-C ₃ N ₄ -2% Ni ₁₂ P ₅	350W xenon lamp ($\lambda > 420$ nm	10 vol%	126 61	[11]
)	triethanolamine		[++]
C-rich g -C ₃ N ₄	300W xenon lamp ($\lambda > 420 \text{ nm}$	10 vol%	125.1	This work
)	triethanolamine	123.1	

Table S1. Recently published $g-C_3N_4$ based materials towards noble metal freephotocatalytic hydrogen generation.

Materials Amorphous C ₃ N ₄	Elements C, N	Light source 300W xenon lamp (λ > 420 nm)	Conditions 10 vol% triethanolamine, 1 wt% Pt	Hydrogen generate rate (µmol h [.] ¹ g ⁻¹) 2035	Apparent quantum efficiency 420 nm 6.1 %	Reference [12]
CQD/g-C ₃ N ₄	C, N	300W xenon lamp (λ > 420 nm)	33.3 vol% methanol, 3 wt% Pt	3538.3	420 nm 10.94 %	[13]
GD-C3N4	C, N	300W xenon lamp (λ > 420 nm)	10 vol% triethanolamine, 3 wt% Pt	23060	420 nm 31.07 %	[14]
CMB-HCI-C ₃ N ₄	C, N, Cl	A white LED array	10 vol% triethanolamine, 3 wt% Pt	380	420 nm 1.6 %	[15]
Carbon-rich g-C₃N₄ Nanosheets	C, N	300W xenon lamp (λ > 400 nm)	12 vol% triethanolamine, 3 wt% Pt	3960	420 nm 4.52 %	[16]
CCN ₅₅₀	C, N	300W xenon lamp (λ > 420 nm)	10 vol% methanol, 3 wt% Pt	600	420 nm 6.8 %	[17]
CN-Br-3	C, N, Br	300W xenon lamp (λ > 420 nm)	10 ml lactic acid, 1 wt% Pt	1354	420 nm 14.3 %	[18]
3D porous C₃N₄ monolith	C, N	300W xenon lamp (λ > 420 nm)	10 vol% triethanolamine, 3 wt% Pt	2900	Not mentioned	[19]
Holey Ultrathin g-C₃N₄	C, N	300W xenon lamp (λ > 400 nm)	12 vol% triethanolamine, 3 wt% Pt	2860	420 nm 4.03 %	[20]

Table S2. Recently published $g-C_3N_4$ based materials towards photocatalytic hydrogen generation.

High-crystalline g-C $_3N_4$	C, N	300W xenon	10 vol%	808.5	420 pm	
		lamp ($\lambda > 400$	triethanolamine, 3		6 17 %	[21]
		nm)	wt% Pt		0.17 %	
O-CN2	C, N	300W xenon	10 vol% lactic acid 1	1062.4	420 pm	
		lamp ($\lambda > 420$			420 1111	[22]
		nm)	wt% Pt.		13.2 %	
		300W xenon	10 vol%			
"seaweed" g-C $_3N_4$	C, N			9900	420 nm	
		lamp $(\lambda > 420)$	triethanolamine, 3		7.8 %	[23]
		nm)	wt% Pt			
g-C $_3N_4$ nanomesh	C, N	300W xenon	10 vol%	8510	100	
		lamp ($\lambda > 420$	triethanolamine, 3		420 nm	[24]
		nm)	wt% Pt		5.1 %	
C-rich g-C₃N₄	C, N	300W xenon	10 vol%	4268	120	
		lamp ($\lambda > 420$	triethanolamine, 3		420 nm	This work
		nm)	wt% Pt		6.8 %	

References:

1. R. Shen, J. Xie, X. Lu, X. Chen and X. Li, ACS Sustain. Chem. Eng., 2018, 6, 4026-4036.

2. R. Shen, J. Xie, P. Guo, L. Chen, X. Chen and X. Li, ACS Appl. Energy Mater., 2018, 1, 2232-2241.

3. R. Shen, J. Xie, H. Zhang, A. Zhang, X. Chen and X. Li, ACS Sustain. Chem. Eng., 2017, 6, 816-826.

4. D. Zeng, P. Wu, W. J. Ong, B. Tang, M. Wu, H. Zheng, Y. Chen and D. L. Peng, *Appl. Catal. B-Environ.*, 2018, **233**, 26-34.

5. D. Zeng, W. J. Ong, Y. Chen, S. Y. Tee, C. S. Chua, D. L. Peng and M. Y. Han, *Part. Part. Syst. Char.*, 2018, **35**, 1700251.

6. D. Zeng, W. Xu, W.-J. Ong, J. Xu, H. Ren, Y. Chen, H. Zheng and D. L. Peng, *Appl. Catal. B-Environ.*, 2018, **221**, 47-55.

7. D. Zeng, W. J. Ong, H. Zheng, M. Wu, Y. Chen, D. L. Peng and M. Y. Han, *J. Mater. Chem. A*, 2017, **5**, 16171-16178.

M. S. Akple, J. Low, S. Wageh, A. A. AlGhamdi, J. Yu and J. Zhang, *Appl. Sur. Sci.*, 2015, **358**, 196-203.
Z. Sun, M. Zhu, M. Fujitsuka, A. Wang, C. Shi and T. Majima, *ACS Appl. Mater. Inter.*, 2017, **9**, 30583-30590.

10. P. Ye, X. Liu, J. locozzia, Y. Yuan, L. Gu, G. Xu and Z. Lin, J. Mater. Chem. A., 2017, 5, 8493-8498.

11. J. Wen, J. Xie, Z. Yang, R. Shen, H. Li, X. Luo, X. Chen and X. Li, ACS Sustain. Chem. Eng., 2017, 5, 2224-2236.

12. M. Z. Rahman, P. C. Tapping, T. W. Kee, R. Smernik, N. Spooner, J. Moffatt, Y. Tang, K. Davey and S. Z. Qiao, *Adv. Fun. Mater.*, 2017, **27**, 1702384.

13. Y. Wang, X. Liu, J. Liu, B. Han, X. Hu, F. Yang, Z. Xu, Y. Li, S. Jia, Z. Li and Y. Zhao, *Angew. Chem. Int. Ed.*, 2018, **57**, 5765-5771.

14. Y. Yu, W. Yan, X. Wang, P. Li, W. Gao, H. Zou, S. Wu and K. Ding, Adv. Mater., 2018, 30.

15. J. Barrio, L. Lin, X. Wang and M. Shalom, ACS Sustain. Chem. Eng., 2017, 6, 519-530.

16. Y. Li, M. Yang, Y. Xing, X. Liu, Y. Yang, X. Wang and S. Song, Small, 2017, 13.

17. L. Lin, W. Ren, C. Wang, A. M. Asiri, J. Zhang and X. Wang, *Appl. Catal. B-Environ.*, 2018, **231**, 234-241.

18. C. Liu, H. Huang, L. Ye, S. Yu, N. Tian, X. Du, T. Zhang and Y. Zhang, *Nano Energy*, 2017, **41**, 738-748. 19. Q. Liang, Z. Li, Z. H. Huang, F. Kang and Q. H. Yang, *Adv. Fun. Mater.*, 2015, **25**, 6885-6892.

20. Y. Li, R. Jin, Y. Xing, J. Li, S. Song, X. Liu, M. Li and R. Jin, Adv. Energy Mater.s, 2016, 6, 1601273.

- 21. W. Xing, W. Tu, Z. Han, Y. Hu, Q. Meng and G. Chen, ACS Energy Letters, 2018, 3, 514-519.
- 22. C. Liu, H. Huang, W. Cui, F. Dong and Y. Zhang, Appl. Catal. B- Environ., 2018, 230, 115-124.
- 23. Q. W. Han, B.; Zhao, Y.; Hu, C. G.; Qu, L. T., Angew. Chem. Int. Ed., 2015, 54, 11433-11437.
- 24. Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang and L. Qu, ACS Nano, 2016, 10, 2745-2751.