Highly efficient photoelectrocatalytic reduction of CO₂ on the

$Ti_3C_2/g-C_3N_4$ heterojunction with rich Ti^{3+} and pyri-N species

Yanjie Xu,^a Shuai Wang,^b Jun Yang,^{*b} Bo Han,^a Rong Nie,^a Jixian Wang,^a Yapeng Dong,^a Xiaogang Yu,^a Jianguo Wang^c and Huanwang Jing ^{*a,c}

Figure S1. (a) FESEM image and (b) cross-sectional SEM image of Pd-TCCN photocathode

Figure S2. TEM images of (a) $g-C_3N_4$, (b) Ti_3C_2 and (c,d) Pd-TCCN3

Figure S3. (a) XPS survey spectra of TCCN3, Au-TCCN3 and Pt-TCCN3 electrodes,

high-resolution XPS spectra of (b) C 1s (c) O 1s, (d) Ti 2p (e) Pd 1s, (f) Au 4f, and (g) Pt 4f

Sample	<mark>C-N-C</mark>	N-(C) ₃	N-H
CN	45.2	34	20.8
TCCN3	57.2	36.6	6.2

Table S1. The N 1s species and concentration in CN and TCCN3 electrodes

Table S2. The BET surface area, pore volume and pore size of all samples

Sample	$S_{BET}(m^2g^{-1})$	Pore volume (cm ³ g ⁻¹)	Pore size (nm)
CN	20.9	0.129	24.9
TCCN1	21.6	0.095	17.7
TCCN2	28.2	0.106	15.1
TCCN3	17.3	0.059	13.6

Figure S4. (a) LSV curves under dark and light irradiation conditions of different photocathodes and (b) EIS Nyquist plots of pristine CN and TCCN3 photocathodes

Figure S5. Mott-Schottky plots of TCCN3 and M-TCCN3 photocathodes

Figure S6. 100 continuous cyclic voltammograms of Pd-TCCN3 photocathode obtained at a scan rate of 50 mV s⁻¹ in CO₂ saturated KHCO₃ (0.1 M) aqueous solution at dark condition

Figure S7. The H₂ evolution rate for different photocathodes of Pd-CN, Pd-TCCN1, and Pd-TCCN2 at -0.85 V; and for Pd-TCCN3 at -0.45V ~ -1.05 V in the two-

electrode system

Figure S8. The H₂ evolution rate for different photocathodes of TCCN3, Pd-TCCN3,

Pt-TCCN3 and Au-TCCN3 at -0.85 V in the two-electrode system

Figure S9. Five cycles of reaction with Pd-TCCN3 served as the photocathode at -

Photocathode	Voltage (V)	S _{HCOO} - (%)	S_{MeOH} (%)
Pd-CN	-0.85	82.4	17.6
Pd-TCCN1	-0.85	62.1	37.9
Pd-TCCN2	-0.85	66.6	33.4
Pd-TCCN3	-0.85	72.1	27.9
TCCN3	-0.85	0	100
Pt-TCCN3	-0.85	0	100
Au-TCCN3	-0.85	0	100
Pd-TCCN3	-0.45	0	100
Pd-TCCN3	-0.65	49.8	30.2
Pd-TCCN3	-1.05	80.6	19.4

Table S3. The selectivity of liquid products for different photocathode at different

voltage

* Selectivity (S)

Figure S10. ¹H NMR and ¹³C NMR spectra of the isotope labeling experiment results