Supporting Information

Two-step synthesis of Sillén-Aurivillius type oxychlorides to enhance the photocatalytic activity for visible-light-induced water splitting

Akinobu Nakada,^a Akinori Saeki,^b Masanobu Higashi,^a Hiroshi Kageyama^{a,c}* and Ryu

 $Abe^{a,c}*$

a. Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering,

Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

b. Department of Applied Chemistry, Graduate School of Engineering, Osaka University,

2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

c. CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

*kage@scl.kyoto-u.ac.jp (H.K.)

*ryu-abe@scl.kyoto-u.ac.jp (R.A.)

Fig. S1 XRD patterns of Bi_3TaO_7 samples prepared by PC and SSR methods.

Fig. S2 SEM images of Bi₃TaO₇ samples prepared by PC and SSR methods.

Fig. S3 Fitting of TRMC transients of (a) 1SSR_973 and 1SSR_1173 and (b) 2PC_973 and 2PC_1173 using a stretched exponential function (black solid lines), $\alpha \exp(-(kt)^{\beta})$, where α , k, and β are the coefficient, the rate constant, and the power factor of the exponent, respectively. The β was fixed at 0.20 to secure the consistency in the comparison of the decays. The lifetime (τ) is defined by the inverse of k ($\tau = 1/k$). The obtained τ values were 0.08, 0.23, 0.42, and 0.59 µs for (a) 1SSR_973 and 1SSR_1173, and (b) 2PC_973 and 2PC_1173, respectively.

Fig. S4 SEM images of 1SSR 1223 and 2PC 923.

Fig. S5 Time courses of photocatalytic water splitting into H₂ and O₂ from a mixture of Bi₄TaO₈Cl (2PC_973) and Ru/SrTiO₃:Rh in aqueous solution (pH = 2.5 adjusted by HCl) without FeCl₃ under visible-light irradiation ($\lambda > 400$ nm).

Fig. S6 XRD patterns of Bi₄NbO₈Cl, Bi₆NbWO₁₄Cl and Sr₂Bi₃Ta₂O₁₁Cl.