Electronic Supplementary Information "Investigation of n-type Doping Strategies for Mg₃Sb₂"

Prashun Gorai,*,†,‡ Brenden Ortiz,† Eric S. Toberer,†,‡ and Vladan Stevanović*,†,‡

E-mail: pgorai@mines.edu; vstevano@mines.edu

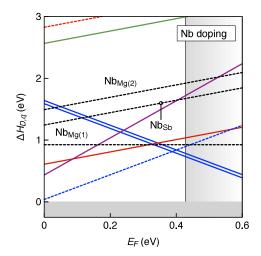


Figure S1: Defect energetics of n-type doping of Mg_3Sb_2 with Nb, under Mg-rich ($\Delta\mu_{Mg}=0$ eV) and most dopant-rich conditions as accommodated by the stability of Mg_3Sb_2 in the Nb-Mg-Sb chemical potential phase space. The native defects are also shown for reference.

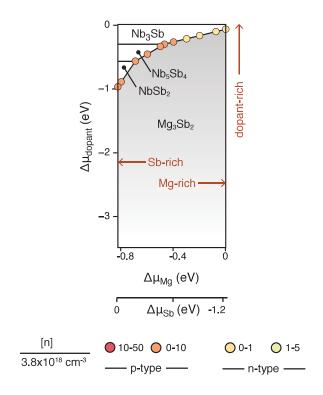


Figure S2: Phase stability of Mg_3Sb_2 in the ternary Nb-Mg-Sb chemical potential phase space. The shaded area represents the region of phase stability of Mg_3Sb_2 . The x-axis is bounded by Mg-rich/Sb-poor ($\Delta\mu_{Mg} = 0$ eV, $\Delta\mu_{Sb} = -1.28$ eV) and Mg-poor/Sb-rich ($\Delta\mu_{Mg} = -0.83$ eV, $\Delta\mu_{Sb} = 0$ eV) conditions. The y-axis denotes $\Delta\mu_{Nb}$, ranging from Nb-rich (0 eV) and below. The markers at the Mg₃Sb₂ phase boundary are the free carrier concentrations calculated at 900K, normalized by the free electron concentration in self-doped n-type Mg₃Sb₂ grown under Mg-rich conditions (3.8×10^{18} cm⁻³). Red and orange markers denote free hole concentrations while other colors free electron concentrations.

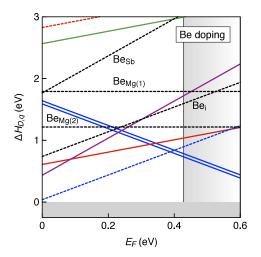


Figure S3: Defect energetics of n-type doping of Mg₃Sb₂ with Be, under Mg-rich ($\Delta \mu_{\rm Mg} = 0$ eV) and most dopant-rich conditions as accommodated by the stability of Mg₃Sb₂ in the Be-Mg-Sb chemical potential phase space. The native defects are also shown for reference.