Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Micron-Sized Monocrystalline LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ as High Volumetric Energy-Density Cathode for Lithium-Ion Batteries

Feng Li,^{†a,b} Linglong Kong,^{†c} Yanyun Sun,^b Yongcheng Jin^{*c} and Peiyu Hou^{*a}

^a School of Physics and Technology, University of Jinan, 336 Nanxinzhuang West Road, Jinan, 250022, China.

^b School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 94 Weijin Road, Tianjin, 300350, China.

^c CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China

Corresponding Author

*E-mail: jinyc@qibebt.ac.cn (Y. Jin) *E-mail: <u>sps_houpy@ujn.edu.cn</u> (P. Hou)

Figure S1 The XRD results of the as-prepared materials mixed with stoichiometric ratio Li_2CO_3 (Li/M=0.35) and calcined at 1000 °C.

Figure S2 (a) TEM image and (b) selected area electron diffraction (SAED) of the MSM-NCM material.

Figure S3 The SEM images of the normal $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ calcined at 900 °C.

Figure S4 The SEM images of the normal LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ calcined at 1000 °C.

Figure S5 XPS results of the pristine of N-NCM and MSM-NCM materials: (a,d) Ni 2p, (b,e) Co 2p, and (c,f) Mn 2p.

Figure S6 SEM images of (a) the positive electrode based on the normal $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ and (b) the positive electrode based on the micron-sized monocrystalline $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$. Both electrodes are tableted at the pressure of 15 MPa.

Composition	Morphology	Tap-density	Voltago rango	volemtric energy-	Def	
Composition	Worphology	$(g \text{ cm}^{-3})$	voltage lange	density Wh L ⁻¹	KCI.	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$	sphere	2.26	3.0-4.4 V	1480	This work	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$	monocrystalline	2.81	3.0-4.4 V	1855	This work	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_{2}$	sphere	2.28	3.0-4.4 V	~1455	1	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_{2}$	sphere	2.32	3.0-4.3 V	1460	2	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$	sphere	2.32	2.8-4.5 V	~1590	3	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_{2}$	sphere	2.38	3.0-4.3 V	~1500	4	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_{2}$	sphere	2.20	2.5-4.3 V	~1315	5	
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$	sphere	2.56	2.8-4.3 V	1615	6	
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$	sphere	2.59	3.0-4.3 V	1650	7	
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$	sphere	2.01	3.0-4.6 V	1413	8	
$LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$	sphere	2.59	3.0-4.3 V	1750	9	
$LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$	sphere	2.32	2.8-4.3 V	~1520	10	
$LiNi_{0.6}Co_{0.15}Mn_{0.25}O_{2}\\$	sphere	2.21	2.8-4.3 V	~1400	10	
$LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}\\$	sphere	2.40	3.0-4.3 V	1850	11	
$LiMn_{1.5}Ni_{0.5}O_4$	sphere	2.10	3.4-5.0 V	~1250	12	
LiMn ₂ O ₄	monocrystalline	2.23	3.3-4.3 V	~980	13	

Table S1 A comparison of tap-density and volemtric energy-density of layered $Li[NiCoMn]O_2$ and spinel $LiMn_2O_4$ cathode materials in the literatures.

Table S2 Mass (m), area (A), thickness (d) and volume (V) of the main components of the 18650-type full-cells using micron-sized monocrystalline $\text{LiNi}_{1/3}\text{Co}_{1/3}\text{Mn}_{1/3}\text{O}_2$ as cathode and MCMB as anode. The geometrical volume of a standard 18650-type full-cell is 16.5 cm³.

	<i>m</i> (g)	$A (\rm cm^2)$	<i>d</i> (µm)	$V(\text{cm}^3)$
Separator	1.4	944	23	2.2
Cathode Al foil	3.1	389	30	1.1
Cathode active material	17.2	654	67	4.4
Anode Cu foil	7.5	418	20	0.8
Anode active material	8.8	695	60	4.2
Electrolyte	4.4	-	-	-
Housing	9.2	-	-	-
Sum	51.6	-	-	12.7

Table S3 Mass (m), area (A), thickness (d) and volume (V) of the main components of the 18650-

0	51			
	<i>m</i> (g)	$A (\mathrm{cm}^2)$	<i>d</i> (µm)	$V(cm^3)$
Separator	1.4	944	23	2.2
Cathode Al foil	3.1	389	30	1.1
Cathode active material	15.5	654	67	4.4
Anode Cu foil	7.5	418	20	0.8
Anode active material	7.9	695	60	4.2
Electrolyte	4.4	-	-	-
Housing	9.2	-	-	-
Sum	49.0	-	-	12.7

type full-cells using normal spherical $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ as cathode and MCMB as anode. The geometrical volume of a standard 18650-type full-cell is 16.5 cm³.

References

- M.-H. Leea, Y.-J. Kanga, S.-T. Myungb and Y.-K. Sun, *Electrochimica Acta*, 2004, 50, 939– 948.
- S. Yang, X. Wang, X. Yang, L. Liu, Z. Liu, Y. Bai and Y. Wang, J. Solid State Electrochem, 2012, 16, 1229–1237.
- 3. P. He, H. Wang, L. Qi and T. Osaka, J. Power Sources, 2006, 160, 627-632.
- X. Luo, X. Wang, L. Liao, S. Gamboa and P. J. Sebastian, J. Power Sources, 2006, 158, 654– 658.
- 5. R. Santhanam and B. Rambabu, J. Power Sources, 2010, 195, 4313–4317.
- 6. S. Zhang, *Electrochimica Acta*, 2007, **52**, 7337–7342.
- P. Hou, X. Wang, D. Wang, D. Song, X. Shi, L. Zhang, J. Guo and J. Zhang, *RSC Adv.*, 2014, 4, 15923.
- W. Hua, J. Zhang, Z. Zheng, W. Liu, X. Peng, X.-D. Guo, B. Zhong, Y.-J. Wang and X. Wang, *Dalton Trans.*, 2014, 43, 14824.
- L. Liang, K. Du, Z. Peng, Y. Cao, J. Duan, J. Jiang and G. Hu, *Electrochimica Acta*, 2014, 130, 82–89.
- L. Liang, K. Du, W. Lu, Z. Peng, Y. Cao and G. Hu, *Electrochimica Acta*, 2014, 146, 207–217.
- M. Liang, D. Song, H. Zhang, X. Shi, Q. Wang and L. Zhang, ACS Appl. Mater. Interfaces, 2017, 9, 38567–38574.
- 12. A. Cao and A. Manthiram, Phys. Chem. Chem. Phys., 2012, 14, 6724-6728.
- H. Tang, Z. Chang, H. Zhao, X.-Z. Yuan, H. Wang and S. Gao, J. Alloys Compd., 2013, 566, 16–21.