Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary information

Hierarchically structured Co₃O₄@carbon porous fibers derived from

electrospun ZIF-67/PAN nanofibers as anode of lithium ion batteries

Chuan-Ling Zhang, ^a* Bing-Rong Lu,^a Fu-Hu Cao, ^a Zhi-Long Yu, ^b Huai-Ping Cong^a

and Shu-Hong Yu^b*

Experimental section

Materials.

All chemicals are analytical grade and are used without further purification.

Synthesis of ZIF-67 NPs and the electrospun solution.

A reported typical procedure was used with some modifications to synthesize ZIF-67 NPs.¹ Firstly, 1.456 g of $Co(NO_3)_2 \cdot 6H_2O$ and 3.28 g of 2-methylimidazole were respectively dissolved in 50 mL of N, N-dimethylformamide (DMF) and the two solutions were quickly mixed together and were then magnetically stirred for 2 h at room temperature. After the reaction, the product was centrifuged and washed with DMF, and was redispersed in 5mL of DMF by sonication. Finally, 0.35 g of PAN was added to the ZIF-67 DMF solution and was dissolved completely by stirring. The obtained homogeneous purple solution was used as the electrospun solution.

Preparation of ZIF-67/PAN nanofibers by electrospinning

The electrospun solution was loaded into a 10 mL syringe that was connected to an 11.0 kV voltage (EST705, High voltage generator) and the nanofibers were connected by a copper net, the distance between needle and collector was about 10 cm, a syringe pump (PHD 2000 infusion, HARVARD APPARATUS) was used to control the flow rate at about 0.2 mL h⁻¹. After electrospinning, ZIF-67/PAN nanofibers were obtained.

Preparation of ES-CNCo₃O₄ fibers

ZIF-67/PAN nanofibers were heated to 200 °C for 2 h with a heating rate of 1 °C min⁻¹ and were further carbonized at 800 °C for 4 h with a heating rate of 2 °C min⁻¹ under the H₂/Ar atmosphere to obtain ES-CNCo. ES-CNCo was pyrolyzed in air at 360 °C for 10 min with a heating rate of 5 °C min⁻¹ to oxidize Co into Co₃O₄, and ES-CNCo₃O₄ were obtained. The two comparative samples were prepared by the same procedures with ES-CNCo₃O₄ but different precursors. CNCo₃O₄ was prepared by directly carbonizing ZIF-67 NPs, while CS-CNCo₃O₄ was prepared from the casting film of electrospun solution that was vacuum dried at 80 °C.

Characterizations.

Transmission electron microscope (TEM) images were obtained on a Hitachi H-7650 with a voltage of 100 kV. High resolution TEM (HRTEM), EDS and element mapping were obtained on a JEM- ARM 200F with an acceleration voltage of 200 kV. Scanning electron microscopy (SEM) images were obtained on a Zeiss Supra 40 with an acceleration energy of 5 kV. X-ray photoelectron spectrometer (XPS) spectra were obtained using an ESCALAB250Xi equipped with an excitation source of Al Kα radiation. X-Ray diffraction (XRD) spectra were obtained on an X, Pert PRO MPD using Cu Kα radiation as the excitation source. Pore volume and size analysis were performed by Brunaure-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH). N₂ sorption analysis was conducted using an ASAP 2020 accelerated surface area and porosimetry instrument (Micromeritics), equipped with the automated surface area. Raman spectra were examined on an LABRAM-HR confocal laser micro Raman spectrometer. TGA was obtained on a Perkin Elmer Diamond thermal analyzer with a heating rate of 10 °C min⁻¹ in air.

Electrochemical measurements.

The working electrode material was prepared by mixing the materials of ES-CNCo₃O₄, Ketjen black, and poly-(vinyl difluoride) (PVDF) on a copper foil with a weight ratio of 8:1:1, and the composite were vacuum dried at 80 °C for overnight. The copper foil was cut into disks with a diameter of 12 mm. The loading of active materials was about 1 mg cm⁻¹. Lithium tablets were used as the counter electrode. The electrolyte was composed of 1 M LiPF6 in ethylene carbonate/dimethyl carbonate (50: 50 wt %). The glass fiber (GF/D, Whatman) was used as a separator. Cells assembly was conducted in a glove box filled with argon gas. The charging-discharge test was performed at an Arbin BT-1 system with the potential among 0.01-3 V at several different current densities. The CV tests were carried on an electrochemical workstation (Autolab PG302N) with the voltage range of 0.01-3 V and a scan rate of 0.1 mV s⁻¹.

Comparison lithium ion chemical diffusion coefficients through a galvanostatic intermittent titration technique (GITT).

From the measurements of GITT, the cells were discharged at 0.5 A g^{-1} for 20 min, and then relaxed under open circuit for 10 h.

Fig. S1. Powder XRD pattern of ZIF-67 NPs.

Fig. S2. TEM images of (a) ES-CNCo and (b) ES-CNCo₃O₄.

Fig. S3. Powder XRD pattern of ES-CNCo.

Fig. S4. TG curve of ES-CNCo.

Fig. S5. SEM images of (a) ZIF-67 NPs, (b) ZIF-67/PAN, (c) ES-CNCo, and (d) ES-CNCo₃O₄.

Fig. S6. EDS spectrum of ES-CNCo $_3O_4$, which shows the existence of C, N, O, and Co.

Fig. S7. TEM (a, b) and SEM images (c, d) of $CNCo_3O_4$ with different magnifications.

Fig. S8. TEM (a, b) and SEM images (c, d) of CS-CNCo $_3O_4$ with different magnifications.

Fig. S9. Powder XRD patterns of the two comparative samples before (a) and after (b) oxidation.

Fig. S10. XPS survey spectra of CNCo₃O₄, CS-CNCo₃O₄, and ES-CNCo₃O₄.

Fig. S11. N1s XPS spectra of (a) ES-CNCo₃O₄, (d) $CNCo_3O_4$, and (g) CS-CNCo₃O₄. O1s XPS spectra of (b) ES-CNCo₃O₄, (e) $CNCo_3O_4$, and (h) CS-CNCo₃O₄. Co2p XPS spectra of (c) ES-CNCo₃O₄, (f) $CNCo_3O_4$, and (i) CS-CNCo₃O₄.

Fig. S12. CV profiles of $CNCo_3O_4$ (a) and $CS-CNCo_3O_4$ (c). GDC profiles of $CNCo_3O_4$ (b) and $CS-CNCo_3O_4$ (d) at 0.1 A g⁻¹.

Fig. S13. Cycling performance of ES-CNCo $_3O_4$ at 2 A g⁻¹.

Fig. S14. GITT curves ("x" represents the stoichiometry of intercalated lithium ion per mole of samples) of the three samples.

Fig. S15. SEM images of ES-CNCo₃O₄ before (a) and after (b) 500 cycles at 1 A g⁻¹. (c) The corresponding EDS spectrum of ES-CNCo₃O₄. Insets in (a) and (b) are their corresponding magnified SEM images.

	Wei	ght (%)	
Element	$ES\operatorname{-}CNCo_3O_4$	CS-CNCo ₃ O ₄	$CNCo_3O_4$
С	66.70	72.00	63.48
Ν	2.92	2.40	2.67
0	13.85	20.14	14.30
Со	16.53	5.46	19.54

Table S1. XPS element contents of C, N, O, and Co in $ES-CNCo_3O_4$, $CS-CNCo_3O_4$, and $CNCo_3O_4$, respectively.

Samples	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)
ES-CNCo ₃ O ₄	338.439	0.353
CNCo ₃ O ₄	81.620	0.303
CS-CNCo ₃ O ₄	267.361	0.356

Table S2. BET data and BJH summary of ES-CNCo₃O₄, CS-CNCo₃O₄, and CNCo₃O₄.

	Current	Initial Discharge	Initial Charge Capacity	Reversible Capacity (mAh/g)	
Materials	density (mA/g)	Capacity (mAh/g)	(mAh/g)	after (Cycle number) at current density(mA/g)	reference
ES-CNCo ₃ O₄	100	1824	1003	1100(200)(100)	This Work
Co₃O₄@CNT	100			700(100)(100)	Angew. Chem. Inter. Edi. 2015 , 54, 7060
Co₃O₄/PCNF	100	1187	1006	952(100)(100)	J. Mater. Chem. A. 2014 , 2, 16939
70%Co ₃ O4/NMEG	100	1037	662	910(100)(100)	Nano Energy. 2014, 3, 134
C-doped Co ₃ O ₄ HNFs	200	1385	972	1125(200)(100)	Adv. Funct. Mater. 2016 , 26, 1428
Hollow Co ₃ O4 nanoparticles	50	1107	880	880(50)(50)	ACS Nano. 2015, 9, 1775
MWCNTs/ Co ₃ O4	100	1171	812	813(100)(100)	ACS Nano. 2015 , 9, 1592
C@Co₃O₄@COAI	200	1377	767	755(100)(200)	Carbon. 2016, 104, 1
Co ₃ O4 parallelepiped	100	1608	1080	1100(50)(100)	J. Mater. Chem. A. 2015 , 3, 22542
Co ₃ O4/EG	30	1000	713	722(50)(100)	Carbon. 2015, 95, 494
Co ₃ O ₄ hollow dodecahedra	100	1317	921	780(100)(100)	Small, 2014, 10, 1932
CNT/Co ₃ O ₄	100	1840	1281	1256(200)(100)	Angew. Chem. Int. Ed. 2016, 55, 5990
G-Co ₃ O ₄	90	1635.1	1112.1	(990.8)(100)(90)	Acs Applied Materials & Interfaces. 2017 , 9, 9662
Co₃O₄@Co@GO	100	1550	843	(686)(60)(200)	Chem. Eng. J. 2017, 321, 495
CF@Co ₃ O ₄	100	630	392	(420)(150)(100)	J. Electroanal. Chem. 2017 , 807, 196

Table S3. Comparison of electrochemical performances of ES-CNCo₃O₄ and Co₃O₄ based materials in previous reports.

References

1 Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. Jiang, *Adv. Mater.*, 2015, **27**, 5010-5016.