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Table S1 The recipes for synthesis of various composites (MS@NC@G).
Products Precursor Solution A Solution B GO suspension

(6 mg mL−1)

MnS@NC@G Mn(DDTC)2/GO MnCl2·6H2O (0.198 g; 1 mmol) in 25 mL of 

ethanol

NaDDTC·3H2O (0.45 g; 2 mmol) in 25 mL of ethanol 5 mL

Fe1−xS@NC@G Fe(DDTC)3/GO FeCl3·6H2O (0.270 g; 1 mmol) in 25 mL of ethanol NaDDTC·3H2O (0.676 g; 3 mmol) in 25 mL of 

ethanol

5 mL

Co9S8@NC@G Co(DDTC)2/GO CoCl2·6H2O (0.238 g; 1 mmol) in 25 mL of ethanol NaDDTC·3H2O (0.45 g; 2 mmol) in 25 mL of ethanol 5 mL

Ni3S2@NC@G Ni(DDTC)2/GO NiCl2·6H2O (0.238 g; 1 mmol) in 25 mL of ethanol NaDDTC·3H2O (0.45 g; 2 mmol) in 25 mL of ethanol 5 mL

ZnS@NC@G Zn(DDTC)2/GO ZnCl2 (0.136 g; 1 mmol) in 25 mL of ethanol NaDDTC·3H2O (0.45 g; 2 mmol) in 25 mL of ethanol 5 mL

Cu2S@NC@G Cu(DDTC)2/GO CuCl2∙2H2O (0.17 g, 1 mmol) in 25 mL of ethanol NaDDTC·3H2O (0.45 g; 2 mmol) in 25 mL of ethanol 5 mL
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Figure S1 (a) Nitrogen sorption isotherms of FeS@NC and FeS@NC@G composites. (b) The 

corresponding BJH pore size distribution of FeS@NC@G composite.
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Figure S2 Characterization of porous carbon that was obtained by removing Fe1−xS component in 

Fe1−xS@NC composite with aqua regia: (a, b) SEM images; (b) nitrogen sorption isotherm; (c) BJH 

pore size distribution curve.
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Figure S3 Characterization of porous carbon that was obtained by removing Fe1−xS component in 

Fe1−xS@NC@G composite with aqua regia: (a, b) SEM images; (b) nitrogen sorption isotherm; (c) 

BJH pore size distribution curve.
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Figure S4 Electrochemical Na storage performance of porous carbon that was obtained by removing 

Fe1−xS component in Fe1−xS@NC@G composite with aqua regia: (a) Representative galvanostatic 

discharge/charge profiles of the porous carbon at 0.2 A g−1 after initial two-cycle activation at 0.05 A 

g−1; (b) cycling performance of the porous carbon. 
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Figure S5 Rate performance of Fe1−xS@NC electrode.
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Figure S6 Cycling performance of Fe1−xS@NC@G electrode at 1 A g−1 in SIB half-cell.
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Figure S7 EIS Nyquist plots of Fe1−xS@NC@G and Fe1−xS@NC electrodes after rate capability 

testing at desodiated state.
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Figure S8 (a) XRD pattern, (b) charge/discharge voltage profiles, and (c) cycling performance at a 

current density of 0.1 A g−1 of home-made Na3V2(PO4)2@C. The Na3V2(PO4)2@C material is 

prepared according to a modified method reported previously.1 The detailed procedure is as follow: 

firstly, citric acid (0.768 g) was dissolved in deionized water (100 mL), and the resultant solution was 

heated to 80 °C. Then NH4VO3 (0.468 g) and NaH2PO4 (0.72 g) was added sequentially under 

continuous stirring. The mixture was held at 80 °C under stirring to evaporate the water and then 

further dried in an oven at 100 °C. The resulting material was ground into powder and sintered at 750 

°C for 12 h (heating ramp: 5 °C min−1) under an argon flow (80 mL min−1) to obtain the final 

Na3V2(PO4)3@C composite.
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Figure S9 Cycling performance of designed Fe1−xS@NC@G //Na3V2(PO4)2@C SIB full cell 

(capacities are calculated based on the Fe1−xS@NC@G anodic material).
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Figure S10 Comparison of full-cell Ragone plots between Fe1−xS@NC@G//NVP@C and other 

reported SIB full-cells including Na0.66[Li0.22Ti0.78]O2//Na3V2(PO4)3@C,2 Sb@TiO2-x//LiCoO2,3 

Sb//P2-Na2/3-Ni1/3Mn2/3O2,4 and MoSe2@N,P-rGO// Na3V2(PO4)3@C.5
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Figure S11 SEM images and the corresponding elemental mapping images of (a) MnS@NC@G, (b) 

Co9S8@NC@G, (c) Ni3S2@NC@G, (d) Cu2S@NC@G, and (e) ZnS@NC@G.
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Figure S12 The initial two discharge/charge profiles of (a) MnS@NC@G, (b) Co9S8@NC@G, (c) 

Ni3S2@NC@G, (d) Cu2S@NC@G, and (e) ZnS@NC@G.
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