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Theoretical Tafel slope and reaction order derivation

As mentioned in the main text, derived theoretical Tafel slopes and reaction order could be used to verify the 
experimentally acquired electrokinetic results and proposed reaction mechanism. Detailed derivations of Tafel 
slopes and reaction orders respect to possible rate determining steps during electrochemical conversion of CO2 

to CO and HCOO- are provided. The derivation was accomplished on the basis of previous reports.1-3 

Tafel slope and reaction order derivation for CO production
Potential rate determining steps for electrochemical CO2 conversion to CO has been listed below.

(1) ∗+  𝐶𝑂2 (𝑎𝑞) + 𝑒 ‒ ⇌𝐶𝑂 ∙‒∗
2

(2) 𝐶𝑂 ∙‒∗
2 + 𝐻𝐶𝑂 ‒

3 ⇌𝐶𝑂𝑂𝐻 ∗ + 𝐶𝑂2 ‒
3

(3) 𝐶𝑂𝑂𝐻 ∗ + 𝑒 ‒ + 𝐻𝐶𝑂 ‒
3 ⇌𝐶𝑂 ∗ + 𝐻2𝑂 + 𝐶𝑂2 ‒

3

(4) 𝐶𝑂 ∗ ⇌𝐶𝑂 +  ∗

Except for a specific rate-limiting step, we assume that all other steps are in quasi-equilibrium as below.

𝐾1 =

𝜃
𝐶𝑂 ∙‒∗

2

𝜃 ∗ 𝑃𝐶𝑂2

𝐾2 =
𝜃

𝐶𝑂𝑂𝐻 ∗ [𝐶𝑂2 ‒
3 ]

𝜃
𝐶𝑂 ∙‒∗

2
[𝐻𝐶𝑂 ‒

3 ]

𝐾3 =
𝜃

𝐶𝑂 ∗ [𝐶𝑂2 ‒
3 ]

𝜃
𝐶𝑂𝑂𝐻 ∗ [𝐻𝐶𝑂 ‒

3 ]

𝐾4 =
𝑃𝐶𝑂𝜃 ∗

𝜃
𝐶𝑂 ∗

Each electrochemical equilibrium constants are defined as below. 

𝐾𝑖 = exp ( ‒ ∆𝐺𝑖° ‒ 𝑛𝑖𝐹(𝐸 ‒ 𝐸𝑖°)
𝑅𝑇 )

For steps (1) and (3),  and  = 1 because there is one-electron transfer. For steps (2) and (4),  and  = 0 𝑛1 𝑛3 𝑛2 𝑛4

because electrons are not involved. During the entire derivation, refers to active site coverage, PCO2 is partial  𝜃 *  
pressure of CO2, ki is rate constant, R is the gas constant, T is temperature, and F is Faraday’s number. 

   
Reaction (1) as rate determining step

Theoretical Tafel slopes could be derived from the rate expression. Tafel slope is defined as shown below. 

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)
∂log 𝑗𝐶𝑂

When, assuming Reaction (1) to be rate-determining steps, the partial current density for CO production is 
written as followed. 



𝑗𝐶𝑂 = 2𝐹𝑘1𝜃 ∗ 𝑃𝐶𝑂2
exp ( ‒

𝛽𝐹𝐸
𝑅𝑇 )

We begin by taking log of both sides. 

log 𝑗𝐶𝑂 = log 2𝐹𝑘1 + log 𝜃 ∗ + log 𝑃𝐶𝑂2
‒

𝛽𝐹𝐸
2.3𝑅𝑇

Expressing partial derivative of the rate expression respect to the electrical potential, 

∂log 𝑗𝐶𝑂

∂𝐸
=‒

𝛽𝐹
2.3𝑅𝑇

+
∂log 𝜃 ∗

∂𝐸

If we assume ,  𝜃 * ≅1

∂log 𝜃 ∗

∂𝐸
= 0

∂log 𝑗𝐶𝑂

∂𝐸
=‒

𝛽𝐹
2.3𝑅𝑇

If we take inverse of the expression shown above, we can acquire theoretical Tafel slope. 

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)
∂log 𝑗𝐶𝑂

=
2.3𝑅𝑇

𝛽𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order can be expressed by partial current density respect to [HCO3
-] concentration. Temperature, CO2 

partial pressure, and electrical potential are assumed to be constant.  

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗𝐶𝑂

∂log [𝐻𝐶𝑂 ‒
3 ]

= 0

Reaction (2) as rate determining step

When, assuming Reaction (2) to be rate-determining steps, the partial current density for CO production is 
written as followed.

𝑗𝐶𝑂 = 2𝐹𝑘2𝜃
𝐶𝑂 ∙‒∗

2
[𝐻𝐶𝑂 ‒

3 ]

Assuming reaction step (1) to be in fast equilibrium, following relationship could be shown. 

𝑘1𝜃 ∗ 𝑃𝐶𝑂2
exp ( ‒

𝛽𝐹𝐸
𝑅𝑇 ) = 𝑘 ‒ 1𝜃

𝐶𝑂 ∙‒∗
2

exp ((1 ‒ 𝛽)𝐹𝐸
𝑅𝑇 )

From the relationship shown in equilibrium constant K1, it is possible to express current respect to  and 𝜃 *



assuming , partial current can be expressed as followed. 𝜃 * ≅1

𝑗𝐶𝑂 = 2𝐹𝑘2

𝑘1

𝑘 ‒ 1
𝑃𝐶𝑂2

[𝐻𝐶𝑂 ‒
3 ]exp ( ‒

𝐹𝐸
𝑅𝑇)

Taking log of both sides achieves following term. 

log 𝑗𝐶𝑂 = log 2𝐹𝑘2

𝑘1

𝑘 ‒ 1
+ log 𝑃𝐶𝑂2

+ log [𝐻𝐶𝑂 ‒
3 ] ‒

𝐹𝐸
2.3𝑅𝑇

With temperature, CO2 partial pressure, and [HCO3
-] concentration remaining constant, Tafel slope can be 

expressed as shown below. 

∂log 𝑗𝐶𝑂

∂𝐸
=‒

𝐹
2.3𝑅𝑇

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)
∂log 𝑗𝐶𝑂

=
2.3𝑅𝑇

𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Since 

temperature, CO2 partial pressure, and electrical potential remain constant, reaction order could be derived as 
shown below.

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗𝐶𝑂

∂log [𝐻𝐶𝑂 ‒
3 ]

= 1

Reaction (3) as rate determining step

When assuming Reaction (3) to be rate-determining steps, the partial current density for CO production is 
written as followed.

𝑗𝐶𝑂 = 2𝐹𝑘3𝜃 ∗
𝐶𝑂𝑂𝐻[𝐻𝐶𝑂 ‒

3 ]exp ( ‒
𝛽𝐹𝐸
𝑅𝑇 )

Assuming reaction step (1) and (2) to be in fast equilibrium, and using equilibrium constant K1 and K2, partial 
current for CO production could be shown as followed. 

𝑗𝐶𝑂 = 2𝐹𝑘3𝐾2
[𝐻𝐶𝑂 ‒

3 ]2

[𝐶𝑂2 ‒
3 ]

𝐾1𝜃 ∗ 𝑃𝐶𝑂2
exp ( ‒

𝛽𝐹𝐸
𝑅𝑇 )

In the limiting case where buffer equilibration and/or mass transport are rapid relative to the rate of catalytic 
turn-over, the following solution equilibrium can be used in order to express the partial current in terms of 
[HCO3

-].1

𝐶𝑂2 + 𝐻2𝑂 + 𝐶𝑂2 ‒
3 ⇌2𝐻𝐶𝑂 ‒

3        𝐾𝑏𝑢𝑓𝑓𝑒𝑟 =
[𝐻𝐶𝑂 ‒

3 ]2

[𝐶𝑂2 ‒
3 ]𝑃𝐶𝑂2



𝑗𝐶𝑂 = 2𝐹𝑘3𝐾2[𝐻𝐶𝑂 ‒
3 ]2𝐾1𝜃 ∗ 𝑃𝐶𝑂2

exp ( ‒
𝛽𝐹𝐸
𝑅𝑇 ) ∗

𝑃𝐶𝑂2
𝐾𝐵𝑢𝑓𝑓𝑒𝑟

[𝐻𝐶𝑂 ‒
3 ]2

= 2𝐹𝑘3𝐾2𝐾1𝜃 ∗ exp ( ‒
𝛽𝐹𝐸
𝑅𝑇 ) ∗ 𝑃 2

𝐶𝑂2
𝐾𝐵𝑢𝑓𝑓𝑒𝑟

Taking log of both sides and differentiating respect to potential, it is possible to achieve following term. 
Noticeably, as shown on given Equilibrium constant of reactions, only K1 is dependent to potential as it 
involves electron during the reaction. 

∂log 𝑗𝐶𝑂

∂𝐸
=

∂log 𝐾1

∂𝐸
‒

𝛽𝐹
2.3𝑅𝑇

=‒
𝐹

2.3𝑅𝑇
‒

𝛽𝐹
2.3𝑅𝑇

=‒
𝐹

2.3𝑅𝑇
(1 + 𝛽)

From above equation, Tafel slope could be written as followed. 

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)
∂log 𝑗𝐶𝑂

=
2.3𝑅𝑇

(1 + 𝛽)𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Considering 

temperature, CO2 partial pressure, and electrical potential to remain constant, reaction order could be shown 
as below.

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗𝐶𝑂

∂log [𝐻𝐶𝑂 ‒
3 ]

= 0

Reaction (4) as rate determining step

When assuming Reaction (4) to be rate-determining steps, the partial current density for CO production is 
written as followed.

𝑗𝐶𝑂 = 2𝐹𝑘4𝜃
𝐶𝑂 ∗

Assuming reaction step (1), (2), and (3) to be in fast equilibrium state, and using equilibrium constant for 
mentioned reactions, surface coverage of CO could be expressed as shown below.

 

𝜃
𝐶𝑂 ∗ =

𝐾3[𝐻𝐶𝑂 ‒
3 ]

[𝐶𝑂2 ‒
3 ]

∗
𝐾2[𝐻𝐶𝑂 ‒

3 ]
[𝐶𝑂2 ‒

3 ]
∗ 𝐾1𝜃 ∗ 𝑃𝐶𝑂2

= 𝐾3𝐾2𝐾1𝜃 ∗ 𝑃𝐶𝑂2

𝑃 2
𝐶𝑂2

𝐾 2
𝐵𝑢𝑓𝑓𝑒𝑟

[𝐻𝐶𝑂 ‒
3 ]2

has been substituted in the partial current term and partial current can been expressed respect to , 
𝜃

𝐶𝑂 ∗ 𝑗𝐶𝑂 𝜃 ∗

active site coverage. 

𝑗𝐶𝑂 = 2𝐹𝑘4𝐾3𝐾2𝐾1𝜃 ∗ 𝑃𝐶𝑂2

𝑃 2
𝐶𝑂2

𝐾 2
𝐵𝑢𝑓𝑓𝑒𝑟

[𝐻𝐶𝑂 ‒
3 ]2

Taking log of both sides and differentiating respect to potential, it is possible to achieve following term. 

∂log 𝑗𝐶𝑂

∂𝐸
=

∂log 𝐾3

∂𝐸
+

∂log 𝐾1

∂𝐸
=‒

𝐹
2.3𝑅𝑇

‒
𝐹

2.3𝑅𝑇
=‒

2𝐹
2.3𝑅𝑇

From above equation, Tafel slope could be written as followed. 



𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)
∂log 𝑗𝐶𝑂

=
2.3𝑅𝑇

2𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Considering 

temperature, CO2 partial pressure, and electrical potential to remain constant, reaction order could be shown 
as below.

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗𝐶𝑂

∂log [𝐻𝐶𝑂 ‒
3 ]

=  ‒ 2



Tafel slope and reaction order derivation for HCOO- production

Potential rate determining steps for electrochemical CO2 conversion to HCOO- has been listed below.

(5) ∗+  𝐶𝑂2 (𝑎𝑞) + 𝑒 ‒ ⇌𝐶𝑂 ∙‒∗
2

(6) 𝐶𝑂 ∙‒∗
2 + 𝐻𝐶𝑂 ‒

3 ⇌𝑂𝐶𝐻𝑂 ∗ + 𝐶𝑂2 ‒
3

(7) 𝑂𝐶𝐻𝑂 ∗ + 𝑒 ‒ ⇌𝐻𝐶𝑂𝑂 ‒∗

(8) 𝐻𝐶𝑂𝑂 ‒∗ ⇌𝐻𝐶𝑂𝑂 ‒ +  ∗

Except for a specific rate-limiting step, we assume that all other steps are in quasi-equilibrium as below.

𝐾5 =

𝜃
𝐶𝑂 ∙‒∗

2

𝜃 ∗ 𝑃𝐶𝑂2

𝐾6 =
𝜃

𝑂𝐶𝐻𝑂 ∗ [𝐶𝑂2 ‒
3 ]

𝜃
𝐶𝑂 ∙‒∗

2
[𝐻𝐶𝑂 ‒

3 ]

𝐾7 =
𝜃

𝐻𝐶𝑂𝑂 ‒∗

𝜃
𝑂𝐶𝐻𝑂 ∗

𝐾8 =
[𝐻𝐶𝑂𝑂 ‒ ]𝜃 ∗

𝜃
𝐻𝐶𝑂𝑂 ‒∗

Each electrochemical equilibrium constants are defined as below.

𝐾𝑖 = exp ( ‒ ∆𝐺𝑖° ‒ 𝑛𝑖𝐹(𝐸 ‒ 𝐸𝑖°)
𝑅𝑇 )

For steps (5), (7) and ,  and  = 1 because there is one-electron transfer. For steps (2) and (4),  and  = 0 𝑛5 𝑛7 𝑛6 𝑛8

because electrons are not involved. During the entire derivation, refers to active site coverage, PCO2 is partial  𝜃 *  
pressure of CO2, ki is rate constant, R is the gas constant, T is temperature, and F is Faraday’s number. 

Reaction (5) as rate determining step

When assuming Reaction (5) to be a rate-determining step, the partial current density for HCOO- production is 
written as followed. 

𝑗
𝐻𝐶𝑂𝑂 ‒ = 𝐹𝑘5𝜃 ∗ 𝑃𝐶𝑂2

exp ( ‒
𝛽𝐹𝐸
𝑅𝑇 )

We begin by taking log of both sides. 

log 𝑗
𝐻𝐶𝑂𝑂 ‒ = log 𝐹𝑘5 + log 𝜃 ∗ + log 𝑃𝐶𝑂2

‒
𝛽𝐹𝐸

2.3𝑅𝑇

Expressing partial derivative of the rate expression respect to the electrical potential, 



∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

∂𝐸
=‒

𝛽𝐹
2.3𝑅𝑇

+
∂log 𝜃 ∗

∂𝐸

If we assume  during the reaction,  𝜃 * ≅1

∂log 𝜃 ∗

∂𝐸
= 0

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

∂𝐸
=‒

𝛽𝐹
2.3𝑅𝑇

If we take inverse of the expression shown above, we can acquire theoretical Tafel slope. 

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

=
2.3𝑅𝑇

𝛽𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Since 

temperature, CO2 partial pressure, and electrical potential remain constant, reaction order could be derived as 
shown below.  

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗

𝐻𝐶𝑂𝑂 ‒

∂log [𝐻𝐶𝑂 ‒
3 ]

= 0

Reaction (6) as rate determining step

When assuming Reaction (6) to be rate-determining steps, the partial current density for HCOO- production is 
written as followed.

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘6𝜃

𝐶𝑂 ∙‒∗
2

[𝐻𝐶𝑂 ‒
3 ]

Assuming reaction step (5) to be in fast equilibrium, following relationship could be shown. 

𝑘5𝜃 ∗ 𝑃𝐶𝑂2
exp ( ‒

𝛽𝐹𝐸
𝑅𝑇 ) = 𝑘 ‒ 5𝜃

𝐶𝑂 ∙‒∗
2

exp ((1 ‒ 𝛽)𝐹𝐸
𝑅𝑇 )

From the relationship shown in equilibrium constant K5, it is possible to express current respect to  and 𝜃 *

assuming , partial current can be expressed as followed. 𝜃 * ≅1

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘6

𝑘5

𝑘 ‒ 5
𝑃𝐶𝑂2

[𝐻𝐶𝑂 ‒
3 ]exp ( ‒

𝐹𝐸
𝑅𝑇)

Taking log of both sides achieves following term. 

log 𝑗
𝐻𝐶𝑂𝑂 ‒ = log 2𝐹𝑘6

𝑘5

𝑘 ‒ 5
+ log 𝑃𝐶𝑂2

+ log [𝐻𝐶𝑂 ‒
3 ] ‒

𝐹𝐸
2.3𝑅𝑇



With temperature, , and [HCO3
-] concentration remaining constant, Tafel slope can be expressed as shown 

 𝑃𝐶𝑂2

below. 

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

∂𝐸
=‒

𝐹
2.3𝑅𝑇

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

=
2.3𝑅𝑇

𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Since 

temperature, CO2 partial pressure, and electrical potential remain constant, reaction order could be derived as 
shown below.

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗

𝐻𝐶𝑂𝑂 ‒

∂log [𝐻𝐶𝑂 ‒
3 ]

= 1

Reaction (7) as rate determining step

When assuming Reaction (7) to be rate-determining steps, the partial current density for HCOO- production is 
written as followed.

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘7𝜃

𝑂𝐶𝐻𝑂 ∗ exp ( ‒
𝛽𝐹𝐸
𝑅𝑇 )

Assuming reaction step (5) and (6) to be in fast equilibrium, and using equilibrium constant K5 and K6, partial 
current for HCOO- production could be shown as followed. 

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘7𝐾6𝐾5𝑃𝐶𝑂2

𝜃 ∗ [𝐻𝐶𝑂 ‒
3 ]

[𝐶𝑂2 ‒
3 ]

exp ( ‒
𝛽𝐹𝐸
𝑅𝑇 )

In the limiting case where buffer equilibration and/or mass transport are rapid relative to the rate of catalytic 
turn-over, the following solution equilibrium can be used in order to express the partial current in terms of 
[HCO3

-].1

𝐶𝑂2 + 𝐻2𝑂 + 𝐶𝑂2 ‒
3 ⇌2𝐻𝐶𝑂 ‒

3        𝐾𝑏𝑢𝑓𝑓𝑒𝑟 =
[𝐻𝐶𝑂 ‒

3 ]2

[𝐶𝑂2 ‒
3 ]𝑃𝐶𝑂2

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘7𝐾6𝐾5𝜃 ∗

𝑃 2
𝐶𝑂2

𝐾𝑏𝑢𝑓𝑓𝑒𝑟

[𝐻𝐶𝑂 ‒
3 ]

exp ( ‒
𝛽𝐹𝐸
𝑅𝑇 )

Taking log of both sides and differentiating respect to potential, it is possible to achieve following term. 

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

∂𝐸
=

∂log 𝐾5

∂𝐸
‒

𝛽𝐹
2.3𝑅𝑇

=‒
𝐹

2.3𝑅𝑇
‒

𝛽𝐹
2.3𝑅𝑇

=‒
𝐹

2.3𝑅𝑇
(1 + 𝛽)



From above equation, Tafel slope could be written as followed. 

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

=
2.3𝑅𝑇

(1 + 𝛽)𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Considering 

temperature, CO2 partial pressure, and electrical potential to remain constant, reaction order could be shown 
as below.

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗

𝐻𝐶𝑂𝑂 ‒

∂log [𝐻𝐶𝑂 ‒
3 ]

=‒ 1

Reaction (6+7) as rate determining step

(6+7) 𝐶𝑂 ∙‒∗
2 + 𝐻𝐶𝑂 ‒

3 + 𝑒 ‒ ⇌𝐻𝐶𝑂𝑂 ‒∗ + 𝐶𝑂2 ‒
3

Reaction (6+7) indicates simultaneous involvement of both proton and electron during the rate-determining 
step, which is combination of reaction (6) and reaction (7). When assuming Reaction (6+7) to be rate-
determining steps, the partial current density for HCOO- production is written as follows.

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘6 + 7𝜃

𝐶𝑂 ∙‒∗
2

[𝐻𝐶𝑂 ‒
3 ]exp ( ‒

𝛽𝐹𝐸
𝑅𝑇 )

Assuming reaction step (5) to be in fast equilibrium, following relationship could be shown. From equilibrium 

constant K5, it is possible to express current respect to .𝜃 *

 

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘6 + 7𝐾5𝑃𝐶𝑂2

𝜃 ∗ [𝐻𝐶𝑂 ‒
3 ]exp ( ‒

𝛽𝐹𝐸
𝑅𝑇 )

Taking log of both sides and differentiating respect to potential, it is possible to achieve following term.

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

∂𝐸
=

∂log 𝐾5

∂𝐸
‒

𝛽𝐹
2.3𝑅𝑇

=‒
𝐹

2.3𝑅𝑇
‒

𝛽𝐹
2.3𝑅𝑇

=‒
𝐹

2.3𝑅𝑇
(1 + 𝛽)

From above equation, Tafel slope could be written as followed.

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

=
2.3𝑅𝑇

(1 + 𝛽)𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Considering 

temperature, CO2 partial pressure, and electrical potential to remain constant, reaction order could be shown 
as below.

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗

𝐻𝐶𝑂𝑂 ‒

∂log [𝐻𝐶𝑂 ‒
3 ]

= 1

Reaction (8) as rate determining step

When assuming Reaction (8) to be rate-determining steps, the partial current density for HCOO- production is 



written as followed.

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘8𝜃

𝐻𝐶𝑂𝑂 ‒∗

Assuming reaction steps (5) and (6+7) to be in fast equilibrium state, and using equilibrium constant for 
mentioned reactions, surface coverage of HCOO- could be expressed as shown below.
 
𝜃

𝐶𝑂 ∙‒∗
2

= 𝐾5𝑃𝐶𝑂2
𝜃 ∗

𝑘�(6 + 7)𝜃𝐶𝑂 ∙‒∗
2

[𝐻𝐶𝑂 ‒
3 ]exp ( ‒

𝛽𝐹𝐸
𝑅𝑇 ) = 𝑘� ‒ (6 + 7)𝜃𝐻𝐶𝑂𝑂 ‒∗ [𝐶𝑂2 ‒

3 ]exp ((1 ‒ 𝛽)𝐹𝐸
𝑅𝑇 )

𝜃
𝐻𝐶𝑂𝑂 ‒∗ =

𝐾5𝑃𝐶𝑂2
𝜃 ∗ [𝐻𝐶𝑂 ‒

3 ]
[𝐶𝑂2 ‒

3 ]
𝑘�(6 + 7)

𝑘� ‒ (6 + 7)
exp ( ‒

𝐹𝐸
𝑅𝑇)

has been substituted in the partial current term and partial current can been expressed respect 
𝜃

𝐻𝐶𝑂𝑂 ‒∗  𝑗
𝐻𝐶𝑂𝑂 ‒  

to , active site coverage. 𝜃 ∗

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘8

𝐾5𝑃𝐶𝑂2
𝜃 ∗ [𝐻𝐶𝑂 ‒

3 ]
[𝐶𝑂2 ‒

3 ]
𝑘�(6 + 7)

𝑘� ‒ (6 + 7)
exp ( ‒

𝐹𝐸
𝑅𝑇)

In the limiting case where buffer equilibration and/or mass transport are rapid relative to the rate of catalytic 
turn-over, the following solution equilibrium can be used in order to express the partial current in terms of 
[HCO3

-].1

𝐶𝑂2 + 𝐻2𝑂 + 𝐶𝑂2 ‒
3 ⇌2𝐻𝐶𝑂 ‒

3        𝐾𝑏𝑢𝑓𝑓𝑒𝑟 =
[𝐻𝐶𝑂 ‒

3 ]2

[𝐶𝑂2 ‒
3 ]𝑃𝐶𝑂2

𝑗
𝐻𝐶𝑂𝑂 ‒ = 2𝐹𝑘8𝐾5𝜃 ∗

𝑘�(6 + 7)

𝑘� ‒ (6 + 7)
exp ( ‒

𝐹𝐸
𝑅𝑇)

𝑃 2
𝐶𝑂2

𝐾𝐵𝑢𝑓𝑓𝑒𝑟

[𝐻𝐶𝑂 ‒
3 ]

Taking log of the current term and differentiating respect to potential, it is possible to achieve following term. 

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

∂𝐸
=

∂log 𝐾5

∂𝐸
‒

𝐹
2.3𝑅𝑇

=‒
𝐹

2.3𝑅𝑇
‒

𝐹
2.3𝑅𝑇

=‒
2𝐹

2.3𝑅𝑇

From above equation, Tafel slope could be written as followed. 

𝑇𝑎𝑓𝑒𝑙 𝑠𝑙𝑜𝑝𝑒 =
∂( ‒ 𝐸)

∂log 𝑗
𝐻𝐶𝑂𝑂 ‒

=
2.3𝑅𝑇

2𝐹
 𝑚𝑉 𝑑𝑒𝑐

Reaction order could be expressed by partial current density respect to [HCO3
-] concentration. Considering 

temperature, CO2 partial pressure, and electrical potential to remain constant, reaction order could be shown 
as below.



𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑟𝑑𝑒𝑟 =
∂log 𝑗

𝐻𝐶𝑂𝑂 ‒

∂log [𝐻𝐶𝑂 ‒
3 ]

=‒ 1
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