Supporting Information

Nanosized Metal Organic Framework with Small Pores for

Kinetic Xenon Separation

Guangli Yu,^a Yueqiao Liu,^a Xiaoqin Zou,^{*a} Nian Zhao,^b Huazhen Rong^a and Guangshan Zhu^{*a}

^a Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

^b Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, P. R.

China

Fig. S1 SEM images of micro- (a) and macro-crystals (b) prepared by varying NH_3 contents in the synthesis solutions.

Fig. S2 XRD patterns of micro- (c) and macro-crystals (b) prepared by varying NH_3 contents in the synthesis solutions, and (a) refers to the simulated pattern from the single crystal.

Fig. S3 TG curve of prepared $CaSDB_{nano}$ MOF material (a), and XRD patterns of the $CaSDB_{nano}$ sample calcined at 450 °C after 2 h (b), soaked in water for 1 d (c) and immersed in different organic solvents for 1 d (d).

Sample	S _{BET}	S _{ext}	$V_{total}^{[a]}$	V _{ultramicro} ^[b]	Pore size ^[c]
	(m² g-1)	(m² g-1)	(cm³ g-1)	(cm³ g⁻¹)	(nm)
CaSDB _{nano} -A	157	104	0.19	0.027	0.5
CaSDB _{nano} -B	140	102	0.15	0.02	0.5

Table S1 A summary of N₂ sorption results for CaSDB nanocrystals.

^[a] total pore volumes at $P/P_0=0.95$.

^[b] ultramicropore volumes calculated by t-plot method with diameter ≤ 0.7 nm. ^[c] pore size distribution in diameter determined using the DFT method.

Fig. S4 (a) N_2 sorption isotherms for $CaSDB_{micro}$ and $CaSDB_{macro}$; and (b) external surface areas of $CaSDB_{nano}$ prepared by Route A, $CaSDB_{micro}$ and $CaSDB_{macro}$ samples.

Fig. S5 Fittings of Henry's constants from Xe and Kr adsorption isotherms.

Fig. S6 Fittings of apparent rate constants using the pseudo-first order model.