Electronic Supplementary Information

Facile synthesis of effective Ru nanoparticles on carbon by adsorption-low temperature pyrolysis strategy for hydrogen evolution

Caili Xu, Mei Ming, Qi Wang, Chun Yang, Guangyin Fan*, Yi Wang, Daojiang Gao, Jian Bi, and

Yun Zhang *

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China

E-mail: fanguangyin@sicnu.edu.cn (G.Y. Fan) and zhangyun@sicnu.edu.cn (Y. Zhang).

This file includes Chemicals and Materials, Characterization, Figs. S1-S7, and Tables. S1-S3.

Chemicals and Materials

Dodecacarbonyltriruthenium (Ru₃(CO)₁₂, 99%), AB with 90% purity, and nafion (5 wt%) were supplied by Sigma-Aldrich. Acetone and ethyl alcohol were brought from Aladdin Industrial Inc. Pt/C (Vulcan carbon) with a metal loading of 20 wt% was provided by Alfa Aesar. Carbon black (Vulcan®XC-72) was acquired from Cabot Corp. No further treatment was performed on the received chemicals and materials. Ultrapure water (resistivity: 18.2 M Ω cm) was directly applied during sample preparations and catalytic activity tests.

Characterization

Transmission electron microscopy (TEM) and high-resolution TEM studies were conducted using a JEOL JEM-2100F instrument. The crystal structure of the samples was measured through X-ray diffraction (XRD) using a PANalytical X'Pert diffractometer using Cu K \square radiation source (λ =1.54178 Å, 40 kV and 40 mA). X-ray photoelectron spectroscopy (XPS) experiments were performed using a Thermo ESCALAB 250 Axis Ultra analyzer with an Al K α radiation source (hv= 1486.6 eV). The specific surface area (SSA) and pore size distribution of the samples were characterized using an automated gas sorption analyzer (Quantachrome, Autosorb-IQ).

Figure S1.

Fig. S1 (a) TEM image of Ru/C-700, (b) particle size distribution of Ru/C-700.

Figure S2.

Fig. S2 XRD patterns of Ru/C-300 and Ru/C-700.

Fig. S3 BET surface areas of (a) carbon, (b) Ru/C-200, (c) Ru/C-300, (d) Ru/C-400, (e) Ru/C-500 and (f) Ru/C-700.

Figure S4.

Fig. S4 Pore size distribution of the carbon support.

Figure S5.

Fig. S5 (a) TEM image and (b) particle size distribution of Ru/C-300 after 1000 cycles.

Fig. S6 (a) LSV curves of Ru/C-300 and Ru/C-700, (b) the capacitive current determined by plotting as a function of scan rates, (c) Tafel slopes of Ru/C-300 and Ru/C-700.

Figure S6.

Figure S7.

Fig. S7 CV curves measured at different scan rates in 1.0 M KOH for as-prepared catalysts (a) Ru/C-200, (b) Ru/C-300, (c) Ru/C-400, (d) Ru/C-500, (e) Ru/C-700.

Catalysts	BET surface area (m ² /g)	Pore volume (cm ³ /g)
Ru/C-200	169.96	0.49
Ru/C-300	171.43	0.41
Ru/C-400	170.23	0.42
Ru/C-500	156.35	0.42
Ru/C-700	150.96	0.46

Table S1. Textural properties of the catalysts.

Electrocatalysts	Overpotential at 10 mA·cm ⁻² (mV)	Electrolyte solution	Tafel Polts (mV dec ⁻¹)	Ref.	
D.:. /NC 750	8	1.0 M KOH	30	1	
Ku/ING-750	53	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	44		
	52	1.0 M KOH	69		
RuP ₂ @NPC	38	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	38	2	
	57	1.0 M PBS	87		
RuCo@NC	28	1.0 M KOH	31	3	
Ru/C ₃ N ₄ /C	79	1.0 M KOH	—	4	
D OC N	17	1.0 M KOH	38	5	
$Ru(\underline{a})C_2N$	13.5	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	30	5	
	29	1.0 M KOH	31	6	
Ru-MoO ₂	55	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	44	Ū	
Ru/GLC	35	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	46	7	
Ru@CN	32	1.0 M KOH	53	8	
	13	1.0 M KOH	60	9	
Ru/MoS ₂ /CP	96	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	—	,	
NiCoP@Ru	52	1.0 M KOH	50	10	
	49	0.5 M H ₂ SO ₄	48	10	
Ru nanosheets	20	0.5 M H ₂ SO ₄	46	11	
Ru/C-300	14	1.0 M KOH	32.5	This work	

 Table S2. Comparison of HER activities with reported literature

Catalanta	TOF	Ea	Deferrere	
Catalysts	$(mol \cdot H_2 (min \cdot mol_{Ru})^{-1})$	(kJ/mol)	Keterences	
Ru/carbon	670	14.3	12	
Ru/Al ₂ O ₃ -NFs	327	36.1	13	
Ru(0)/TiO ₂	241	70	14	
Ru@SiO ₂	200	38.2	15	
$Ru@Al_2O_3$	83.3	48	16	
Ru ⁰ /CeO ₂	361	51	17	
Ru^0/ZrO_2	173	58	18	
$Ru/g-C_3N_4$	313	37.4	19	
Ru/ND	229	50.7	20	
Ru/Graphene	600	12.7	21	
Ru@X-NW	135	77	22	
RuCu/graphene	135	30.59	23	
Ru ⁰ /HfO ₂	170	65	24	
Ru/C	429.5	34.8	25	
PtRu@PVP	308	56.3	26	
Ru(0)@MWCNT	329	33	27	
Ru/TiO ₂ (B)	303	45.6	28	
Ru@Ni/graphene	339.5	36.59	29	
RuRh@PVP	386	47.4	30	
Ru/C-300	643	38.7	This work	

Table S3. Comparison of catalytic activity of previously reportedruthenium-based catalysts applied for AB hydrolysis

References:

- 1. R. Ye, Y. Liu, Z. Peng, T. Wang, A. S. Jalilov, B. I. Yakobson, S. H. Wei and J. M. Tour, ACS Appl. Mater. Interfaces, 2017, 9, 3785-3791.
- 2. Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, Angew Chem. Int. Ed., 2017, 56, 11559-11564.
- 3. J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang and Q. Chen, *Nat. Commun.*, 2017, 8, 14969.
- Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2016, 138, 16174-16181.
- J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong and J. B. Baek, *Nat. Nanotechnol.*, 2017, 12, 441-446.
- P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su and Q. Chen, J. Mater. Chem. A, 2017, 5, 5475-5485.
- Z. Chen, J. Lu, Y. Ai, Y. Ji, T. Adschiri and L. Wan, ACS Appl. Mater. Interfaces, 2016, 8, 35132-35137.
- 8. J. Wang, Z. Wei, S. Mao, H. Li and Y. Wang, *Energy Environ. Sci.*, 2018.
- 9. J. Liu, Y. Zheng, D. Zhu, A. Vasileff, T. Ling and S. Z. Qiao, *Nanoscale*, 2017, 9, 16616-16621.
- S. Liu, Q. Liu, Y. Lv, B. Chen, Q. Zhou, L. Wang, Q. Zheng, C. Che and C. Chen, *Chem. Commun.*, 2017, 53, 13153-13156.
- X. Kong, K. Xu, C. Zhang, J. Dai, S. Norooz Oliaee, L. Li, X. Zeng, C. Wu and Z. Peng, ACS Catal., 2016, 6, 1487-1492.
- M. Navlani-García, K. Mori, A. Nozaki, Y. Kuwahara and H. Yamashita, *Appl. Catal.*, *A*, 2016, 527, 45-52.
- M. Hu, H. Wang, Y. Wang, Y. Zhang, J. Wu, B. Xu, D. Gao, J. Bi and G. Fan, *Int. J. Hydrogen Energy*, 2017, 42, 24142-24149.
- S. Akbayrak, S. Tanyıldızı, İ. Morkan and S. Özkar, *Int. J. Hydrogen Energy*, 2014, 39, 9628-9637.
- 15. Q. Yao, W. Shi, G. Feng, Z.-H. Lu, X. Zhang, D. Tao, D. Kong and X. Chen, *J. Power Sources*, 2014, **257**, 293-299.
- 16. H. Can and Ö. Metin, *Appl. Catal. B.*, 2012, **125**, 304-310.
- 17. S. Akbayrak, Y. Tonbul and S. Ozkar, *Dalton. Trans.*, 2016, 45, 10969-10978.
- 18. Y. Tonbul, S. Akbayrak and S. Ozkar, J. Colloid Interface Sci, 2017, 513, 287-294.
- 19. Y. Fan, X. Li, X. He, C. Zeng, G. Fan, Q. Liu and D. Tang, *Int. J. Hydrogen Energy*, 2014, **39**, 19982-19989.
- 20. G. Fan, Q. Liu, D. Tang, X. Li, J. Bi and D. Gao, Int. J. Hydrogen Energy, 2016, 41, 1542-1549.
- C. Du, Q. Ao, N. Cao, L. Yang, W. Luo and G. Cheng, *Int. J. Hydrogen Energy*, 2015, 40, 6180-6187.
- 22. S. Akbayrak and S. Ozkar, Dalton. Trans., 2014, 43, 1797-1805.
- 23. N. Cao, K. Hu, W. Luo and G. Cheng, J. Alloys Compd., 2014, 590, 241-246.
- 24. E. B. Kalkan, S. Akbayrak and S. Özkar, *Mol. Catal.*, 2017, 430, 29-35.
- 25. H. Liang, G. Chen, S. Desinan, R. Rosei, F. Rosei and D. Ma, *Int. J. Hydrogen Energy*, 2012, **37**, 17921-17927.
- 26. M. Rakap, Appl. Catal., A, 2014, 478, 15-20.
- 27. S. Akbayrak and S. Ozkar, ACS Appl. Mater. Interfaces, 2012, 4, 6302-6310.
- Y. Ma, X. Li, Y. Zhang, L. Chen, J. Wu, D. Gao, J. Bi and G. Fan, J. Alloys Compd., 2017, 708, 270-277.

- 29. N. Cao, J. Su, W. Luo and G. Cheng, Int. J. Hydrogen Energy, 2014, **39**, 426-435.
- 30. M. Rakap, J. Alloys Compd., 2015, 649, 1025-1030.