Supporting Information

Graphene oxide templating: facile Synthesis of morphology engineered

crumpled SnO₂ nanofibers for superior chemiresistor

Dong-Ha Kim, ^{†, ‡} Ji-Soo Jang, ^{†, ‡} Won-Tae Koo, ^{†, ‡} and Il-Doo Kim ^{†, ‡, *}

Prof. I-D Kim, D-H Kim, J-S Jang, W-T Koo

[†]Department of Materials Science and Engineering, Korea Advanced Institute of Science and

Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

[‡]Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291, Daehak-ro,

Yuseong-gu, Daejeon 34141, Republic of Korea

*e-mail: <u>idkim@kaist.ac.kr</u>

Table of Contents

- S1. Cross-sectional SEM images of 2D SnO₂ NSs, Pt-2D SnO₂ NSs, C_2D SnO₂ NFs, and Pt-C_2D SnO₂ NFs.
- S2. TEM images of 2D Sn-GO and 2D SnO₂ NSs after calcination.
- **S3**. SEM images of Sn-GO (0.05, 0.10, and 0.14 g) loaded as-spun Sn-GO/PVP NFs and the corresponding NFs after calcination.
- S4. PXRD analysis of C_2D SnO₂ NFs synthesized from solutions containing three different amounts of Sn-GO sheets.
- **S5**. TEM image of polyol-Pt NPs and histogram for particle size distribution.
- S6. TEM images of as-spun Sn-GO/PVP NFs and dense SnO₂ NFs.
- **S7**. SAED patterns and EDS mapping results of C_2D SnO₂ NFs.
- **S8**. SEM images of C_2D SnO₂ NFs calcined at 600 °C for 1 h.
- **S9**. Isothermal adsorption/desorption plot and pore size distribution of Pt-2D SnO₂ NSs and Pt-C_2D SnO₂ NFs.
- **S10**. Dynamic acetone (1–5 ppm) response characteristics of the sensors with at different loading amounts of Pt catalyst measured at 350 °C.
- **S11.** Dynamic acetone (1–5 ppm) response characteristics at 350 °C of Pt loaded dense SnO₂ NFs, pristine SnO₂ NFs, Pt loaded 2D SnO₂ NSs, and 2D SnO₂ NSs.
- **S12.** Response time toward 1–5 ppm acetone at 350 °C.
- **S13.** Dynamic acetone (1 ppm) sensing characteristics at 350 °C under different humidity levels.
- S14. Long-term stability tests of Pt-C_2D SnO₂ NFs toward acetone sensing.
- **S15.** Low-resolution and cross-sectional SEM images of 2D SnO₂ NSs and C_2D SnO₂ NFs based sensing layers coated on alumina substrates.
- **S16.** Schematic illustration of the sensor measurement system to detect healthy and simulated diabetic breath.

Table S1. A spectral feature table of O⁻ and O²⁻ in dense $SnO_2 NFs$, 2D $SnO_2 NSs$, C_2D $SnO_2 NFs$, and Pt-C_2D $SnO_2 NFs$.

Figure S1. Cross-sectional SEM images of (a) 2D SnO_2 NSs, (b) Pt-2D SnO_2 NSs, (c) C_2D SnO_2 NFs, and (d) Pt-C_2D SnO_2 NFs.

Figure S2. (a) TEM image of Sn-coated GO sheet, and (b) 2D SnO_2 NSs after calcination in air at 500 °C for 1 h.

Figure S3. SEM images of (a) as-spun 0.05 g Sn-GO/PVP NFs, (b) calcined sample of (a) at 500 °C for 1 h, (c) as-spun 0.10 g Sn-GO/PVP NFs, and (d) calcined sample of (c) at 500 °C for 1 h, (e) as-spun 0.14 g Sn-GO/PVP NFs, and (f) calcined sample of (e) at 500 °C for 1 h.

Figure S4. PXRD analysis of C_2D SnO₂ NFs synthesized from solutions containing three different amounts of Sn-GO sheets, i.e., 0.05, 0.10, and 0.14 g.

Figure S5. (a) TEM image of polyol-Pt NPs, and (b) histogram for particle size distribution.

Figure S6. (a) TEM image of as-spun Sn-GO/PVP NF, (b) STEM image and EDS mapping of Sn-GO/PVP NF with respect to Sn, O, and C, and (c) TEM image of dense SnO₂ NF.

Figure S7. (a) SAED pattern of C_2D SnO₂ NFs, (b) a dark field STEM image of the C_2D SnO₂ NF, and EDS mapping of the C_2D SnO₂ NF with respect to (c) Sn and (d) O elements.

Figure S8. SEM images of (a) postcalcined C_2D SnO₂ NFs at 600 °C for 1 h and (b) high resolution SEM image of (a) collapsed NFs structure with large grain size.

Figure S9. (a) Isothermal adsorption/desorption plot and BET surface area of Pt-C_2D SnO₂ NFs and Pt-2D SnO₂ NSs, and (b) pore size distribution of Pt-C_2D SnO₂ NFs and Pt-2D SnO₂ NSs.

Figure S10. Dynamic response characteristics of catalyst loaded NFs toward 1–5 ppm of acetone at $350 \,^{\circ}$ C.

Figure S11. Dynamic response characteristics of (a) 0.008 wt% Pt loaded dense SnO₂ NFs and pristine dense SnO₂ NFs toward 1–5 ppm of acetone at 350 °C, and (b) 0.008 wt% Pt loaded 2D SnO₂ NSs and pristine 2D SnO₂ NSs toward 1–5 ppm of acetone at 350 °C.

Figure S12. Response times of four different sensing layers to 1–5 ppm of acetone at 350 °C.

Figure S13. (a) Dynamic response characteristics of 0.008 wt% Pt-C_2D SnO₂ NFs toward acetone and (b) dynamic variation in resistance toward 1 ppm of acetone at 350 °C under three different humidity levels, i.e., 30%, 55%, and 95% RH.

Figure S14. (a) Long-term stability tests of Pt-C_2D SnO₂ NFs toward 5 ppm acetone at 350 °C using the new and 6-month old sensors and (b) reliability tests of Pt-C_2D SnO₂ NFs toward 1 ppm acetone for 13 cycles at 350 °C using the new and 6-month old sensors.

Figure S15. (a) Low-resolution SEM image of the 2D SnO₂ NSs sensing layer and (b) crosssectional SEM image of (a) upon coating on an alumina substrate. (c) Low-resolution SEM image of the 0.008 wt% Pt-C_2D SnO₂ NFs sensing layer and (d) cross-sectional SEM image of (c) upon drop coating on an alumina substrate.

Figure S16. Schematic illustration of the sensor measurement system for detection of healthy and simulated diabetic breath. The exhaled breaths were collected in Tedlar bags and flown into the sensors array by a diaphragm pump.

Spectral Feature Table			
Element/sample	Peak Energy (eV)	Peak Area (eV counts)	Ratio (O ⁻ /O ²⁻)
O ²⁻ (1s)/Dense SnO ₂ NFs	530.35	65281.02	0.837
O ⁻ (1s)/Dense SnO ₂ NFs	531.08	54649.87	
O ²⁻ (1s)/2D SnO ₂ NSs	530.64	87242.65	1.173
$O^{-}(1s)/2D SnO_2 NSs$	531.38	102377.92	
O ²⁻ (1s)/C_2D SnO ₂ NFs	530.53	62640.81	1.033
O ⁻ (1s)/C_2D SnO ₂ NFs	531.30	64722.88	
O ²⁻ (1s)/Pt-C_2D SnO ₂ NFs	530.58	73881.78	1.176
O ⁻ (1s)/Pt-C_2D SnO ₂ NFs	531.29	86848.09	

Table S1. A spectral feature table of O⁻ and O²⁻ in dense SnO₂ NFs, 2D SnO₂ NSs, C_2D SnO₂ NFs, and Pt-C_2D SnO₂ NFs.