Electronic supplementary information

Modulating oxygen vacancies in Sn-doped hematite film grown on silicon microwires for

photoelectrochemical water oxidation

Zhongyuan Zhou,^{a,b} Shaolong Wu,* a,b Linling Qin,^{a,b} Liang Li,^{a,b} Liujing Li^{a,b} and Xiaofeng Li*a,b

^a School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China

^b Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China

*Correspondence

Dr. Shaolong Wu; Prof. Xiaofeng Li

E-mail: shaolong_wu@suda.edu.cn; xfli@suda.edu.cn

Name	Molecular formula	Specification		
Silicon	Si	N (100), ρ (0.01-0.02 Ωcm)		
Acetone	CH ₃ COCH ₃	> 99.5%		
Ethanol	CH ₃ CH ₂ OH	> 99.7%		
Deionized water	H ₂ O	$\rho \geq 18.25 \; \Omega m$		
Sulfuric acid	H_2SO_4	95.0% ~ 98.0%		
Hydrogen peroxide	H_2O_2	AR, $\geq 30\%$		
Hydrofluoric acid	HF	AR, \geq 40%		
Silver nitrate	AgNO ₃	AR, \geq 99.8		
Nitric acid	HNO ₃	AR, 65.0% ~ 68.0%		
Ferric Nitrate	Fe(NO ₃) ₃ ·9H ₂ O	AR, ≥ 99.99%		
Stannic Chloride	$SnCl_4 \cdot 5H_2O$	$AR, \geq 98\%$		
Silica gel		NanDa 703		
Developing solution		RZX-3038		
Photoresist	_	RZJ-304		

 Table S1 Reagents and related experimental materials are employed in the experiment.

Fig. S1 (a) The normal thermal process for synthesizing the hematite; (b) the post-heating process with RTP for modifying the hematite.

Table S2. A comparison of the PEC performances between the typical hematite/silicon (and hematite) photoanodes in the related literatures and our present α -Fe₂O₃/SiMWs photoanode.

Photoanode	Film texture	Optimized sample (<i>J-V</i> curves)	J _{ph@1.23V} U _{on}	Testing conditions (under AM 1.5G irradiation)	Key Method	Ref.
α-Fe ₂ O ₃ /n-SiNWs	а в <i>Род.</i> 1 1 5 µm	b) 12 10 10 10 10 10 10 10 10 10 10	0.90 mA/cm ² 0.60 V _{RHE}	1 M NaOH	atomic layer deposition	[1]
α-Fe ₂ O ₃ /n-SiNWs		Current of the second of the s	5.28 mA/cm ² 0.50 V _{RHE}	1 M NaOH (scan rate 50 mV/s) with magnetic stirring	deposition annealing	[2]
α-Fe ₂ O ₃ /n-SiNWs decorated with AuNPs	<u>зи</u> <u>5 µт</u>	a 	2.56 mA/cm ² at 0 V vs. Pt mesh	1 M NaOH two-electrode cell	deposition annealing	[3]
Sn@α-Fe ₂ O ₃ / SiMWs with RTP	е. с с 1 пл 20 пл 10 пл 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.12 mA/cm ² 0.15 V _{RHE}	1 M NaOH (scan rate 20 mV/s)	Sn doping and RTP at 400 °C for 5 min	This work
Fe ₂ TiO ₅ /Fe ₂ O ₃ / ITO/FTO with OER catalyst		$ \begin{array}{c} 25 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2.20 mA/cm ² 0.95 V _{RHE}	1 M NaOH purged with N ₂ (scan rate 20 mV/s)	hydrothermal photoelectron- deposition, ALD, hydrothermal, sputtering	[4]
Pt-doped hematite with Co-Pi	- 100 X70.000 - 100nm	Current de la construir de la	4.32 mA/cm ² 0.50 V _{RHE}	1 M NaOH	in-situ two-step annealing at 550 °C and 800 °C of FeOOH nanorods	[5]
α-Fe ₂ O ₃ /FTO	c) N-hematite	A-hematile A-hema	1.82 mA/cm ² 1.0 V _{RHE}	1 M NaOH (scan rate 10 mV/s)	sintered in an oxygen-deficient atmosphere (N ₂ +air) at 550 °C for 2 h	[6]

Table S3. A summary of the Mott-Schottky performance of the pristine SiMWs, the α -Fe₂O₃/FTO and the four modified α -Fe₂O₃/SiMWs hybrids.

Samples	$N_{\rm D}~({\rm cm}^{-3})$	$U_{\mathbf{fb}}$ (V _{RHE})
SiMWs	1.64×10 ¹⁸	0.68
α-Fe ₂ O ₃ /FTO	2.09×10 ¹⁹	0.53
α-Fe ₂ O ₃ /SiMWs	2.01×10 ¹⁸	0.91
$Sn@\alpha$ -Fe ₂ O ₃ /SiMWs	3.98×10 ¹⁸	0.89
α -Fe ₂ O ₃ /SiMWs with RTP	6.32×10 ¹⁸	0.87
$Sn@\alpha$ -Fe ₂ O ₃ /SiMWs with RTP	1.92×10 ¹⁹	0.84

Table S4. The fitting EIS data of the α -Fe₂O₃/SiMWs with various treatments based on equivalent circuits.

Sample	$R_{\rm S}(\Omega)$	$R_{\rm CT}(\Omega)$	$C_{\rm SC}({\rm F})$
α-Fe ₂ O ₃ /SiMWs	63.86	545.8	2.34×10 ⁻⁸
Sn@a-Fe ₂ O ₃ /SiMWs	19.19	257	1.18×10 ⁻⁸
α-Fe ₂ O ₃ /SiMWs with RTP	18.17	65.38	8.09×10 ⁻⁸
Sn@α-Fe ₂ O ₃ /SiMWs with RTP	10.74	13.87	4.81×10 ⁻⁷

Fig. S2 (a–d) Typical SEM images of the freshly as-prepared SiMWs. (a) and (b) are the top view and cross-sectional image, respectively. (c) and (d) are the detail view of the top and the side, respectively.

Fig. S3 TEM image of the uniform hematite film conformally grown on SiMWs.

Fig. S4 Raman spectra of the α -Fe₂O₃/SiMWs. The five peaks (225 cm⁻¹, 291 cm⁻¹, 409 cm⁻¹, 498 cm⁻¹ and 610 cm⁻¹) are correspond to the standard peaks of α -Fe₂O₃. The peak at 523 cm⁻¹ is from the Si (distinguished by *), and the last peak at 662 cm⁻¹ is assigned to the presence of Fe₃O₄, due to that FeO are not stable at room temperature.

Fig. S5 SEM (a) and EDS spectrum (b) of the $Sn@\alpha$ -Fe₂O₃/SiMWs recorded in the red box in (a).

Fig. S6 XPS spectra of the Sn@ α -Fe₂O₃/SiMWs. In (b), the peaks at 724.7 eV and 710.9 eV are ascribed to the Fe 2p_{1/2} and Fe 2p_{3/2}, indicating the typical values of Fe³⁺ in Fe₂O₃. In (c) the Sn 3d_{5/2} (486.1 eV) and Sn 3d_{3/2} (494.6 eV) indicate that the Sn exists in the Sn@ α -Fe₂O₃/SiMWs. In (d), two peaks at 529.9 eV and 532.4 eV are assigned to iron oxide lattice (Fe-O) and hydroxyl groups (Fe-OH adsorbed), respectively.

Fig. S7 SEM image of the α -Fe₂O₃ grown on the FTO substrate (a) and the corresponding XRD pattern (b).

Fig. S8 Photoelectrochemical properties of the α -Fe₂O₃/FTO (a, b) and the bare SiMWs (c, d). (a and c) are the *J*-*V* curves. (b and d) are the Mott-Schottky plots.

Fig. S9 IPCE spectra of the Sn@ α -Fe₂O₃/SiMWs with RTP under 0.5 V bias between the photoanode and Pt electrode (i.e., the applied potential is calculated to be ~1.3 V_{RHE} according to the Nernst equation).

Fig. S10 The applied bias photon-to-current efficiency (ABPE) of the $Sn@\alpha$ -Fe₂O₃/SiMWs with RTP.

Fig. S11 (a) *J-V* curves of the Sn@ α -Fe₂O₃/SiMWs with RTP after PEC measurement for different operation time; (b) SEM images of the Sn@ α -Fe₂O₃/SiMWs with RTP after PEC testing for 1 h.

Fig. S12 XPS spectra of the Sn@α-Fe₂O₃/SiMWs with RTP before PEC test and after PEC test.

Fig. S13 The employed system for H₂ and O₂ evolution amount from a PEC cell.

Fig. S14 (a) Photocurrent density vs. time (*I-t*) curve of the $Sn@\alpha$ -Fe₂O₃/SiMWs with RTP, the curve was obtained under simulated AM 1.5 G illumination at potential of 1.23 V vs. RHE in 1.0 M NaOH electrolyte. (b) Gas evolution amount and the calculated Faradaic efficiency.

Fig. S15 *J-V* curves of the Sn@ α -Fe₂O₃/SiMWs with RTP using (a) heavily n-doped (0.01–0.02 Ω cm) and (b) lightly n-doped Si (1–10 Ω cm) substrates.

Fig. S16 Reflectance spectra of the polished Si, the bare SiMWs, the $Sn@\alpha$ -Fe₂O₃/SiMWs and the bare disordered Si nanowires (as shown in the inset SEM image) for using as a reference.

Fig. S17 SEM images of the prepared α -Fe₂O₃/SiNWs (a) top-view, (b) cross-section and (c) the detail view of the side; (d) *J-V* curves of the Sn@ α -Fe₂O₃/SiMWs with RTP and the Sn@ α -Fe₂O₃/SiNWs with RTP in the dark and under simulated AM 1.5G irradiation.

Fig. S18 The contrastive patterns of Raman of the Sn-doped and undoped α -Fe₂O₃/SiMWs without RTP (peaks indicated by * are from Si).

Fig. S19 The XPS contrastive plots of the Sn-doped and undoped α -Fe₂O₃/SiMWs photoanode.

Fig. S20 Mott-Schottky plots of the $Sn@\alpha$ -Fe₂O₃/SiMWs with RTP at different temperatures.

Fig. S21 The XRD patterns of the $Sn@\alpha$ -Fe₂O₃/SiMWs with RTP at different temperatures.

Fig. S22 EDS comparison for the undoped α -Fe₂O₃/SiMWs without RTP (a), the Sn-doped α -Fe₂O₃/SiMWs without RTP (b), and the Sn-doped α -Fe₂O₃/SiMWs with RTP at different temperatures (c–f), respectively.

Fig. S23 EDS comparison for the Sn@ α -Fe₂O₃/SiMWs without RTP (a), RTP at 400 °C (b) and RTP at 800 °C (c), respectively.

Fig. S24 The contrastive SEM images of the $Sn@\alpha$ -Fe₂O₃/SiMWs with RTP at different temperatures.

Fig. S25 HRTEM analysis of the synthesized Sn-doped α -Fe₂O₃ without RTP (a and b), with RTP at 400 °C (c and d) and RTP at 800 °C (e and f).

Fig. S26 The XPS spectra of (a) survey, (b) Sn 3d, (c) N 1s and (d) normalized XPS O1s peak of the $Sn@\alpha$ -Fe₂O₃/SiMWs with RTP at different temperatures.

References

- [1] M. T. Mayer, C. Du and D. Wang, J. Am. Chem. Soc., 2012, 134, 12406–12409.
- [2] X. Qi, G. She, X. Huang, T. Zhang, H. Wang, L. Mu and W. Shi, *Nanoscale*, 2014, 6, 3182– 3189.
- [3] X. Wang, K.-Q. Peng, Y. Hu, F. Q. Zhang, B. Hu, L. Li, M. Wang, X. M. Meng and S. T. Lee, *Nano Lett.*, 2014, 14, 18–23.
- P. Tang, H. Xie, C. Ros, L. Han, M. B. Peiro, Y. He, W. Kramer, A. P. Rodriguez, E. Saucedo, J. R. G. Mascaros, T. Andreu, J.R. Morante and J. Arbiol, *Energy Environ. Sci.*, 2017, 10, 2124–2136.
- [5] J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen and J. S. Lee, *Sci. Rep.*, 2013, 3, 2681.
- [6] Y. Ling, G. Wang, J. Reddy, C. Wang, J. Zhang and Y. Li, Angew. Chem. Int. Ed., 2012, 51, 4074–4079.
- [7] C. Zhu, C. Li, M. Zheng and J. J. Delaunay, ACS Appl. Mater. Interfaces, 2015, 7, 22355–22363.
- [8] J. J. Wang, Y. Hu, R. Toth, G.Fortunato and A. Braun, J. Mater. Chem. A., 2016, 4, 2821–2825.
- [9] A. N. Bondarchuk, L. M. Peter, G. P. Kissling, E. Madrid, J. A. Aguilar-Martinez, Z. Rymansaib, P. Iravani, M. Gromboni, L. H. Mascaro, A. Walsh, F. Marken, *Appl. Catal. B-Environ.*, 2017, 211, 289–295.