Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION

Spectroscopic insights leading to a better understanding of site-isolation in heterogeneous nanocatalysts

Maela Manzoli,*^a Andrea Jouve,^b Arran M. Gill,^c Giancarlo Cravotto,^a and Robert Raja^c

^a Dipartimento di Scienza e Tecnologia del Farmaco and NIS – Interdepartmental Centre for Nanostructured Interfaces and Surfaces, University of Torino, via P. Giuria 9, 10125 Torino(Italy). *E-mail: <u>maela.manzoli@unito.it</u>.

^b Dipartimento di Chimica, University of Milano, via Golgi 19,20133 Milano (Italy).

^c University of Southampton, Highfield, Southampton SO17 1BJ (U.K.).

Catalyst		Process	Substrate	Oxidant	Temp.	Time	Cyol	Cyone	Ref.
Active	Support				/ °C ¯	/ hr	Conv.	Yield /	
Species							/ %	%	
Cu NPs	Zn / Si Oxide	Flow	Cyol	*	300	2	91	77	1
CuO / MgO	-	Flow	Cyol	*	330	1	83	77	2
CaO	Ti Oxide	Flow	Cyol	*	350	1	90	68	3
CuO / Al ₂ O ₃	-	Flow	Cyol	*	330	1	48	45	2
Cu / Ni NPs	Ce Oxide	Flow	Cyol	*	350	1	42	38	4
CaO / V_2O_5	Ti Oxide	Flow	Cyol	*	427	1	75	38	3
Cu NPs	Ce Oxide	Flow	Cyol	*	350	1	32	28	4
Ni NPs	Ce Oxide	Flow	Cyol	*	350	1	26	24	4
Au NPs	Ti Oxide	Batch	Cyol	H_2O_2	90	1	87	87	5
V_2O_3	K / Mn Oxide	Batch	Cyol	H_2O_2	90	8	26	26	6
V_2O_3	K / Mn Oxide	Batch	Cyol	TBHP	90	8	49	49	6
Cu	Aluminosilicate	Batch	Cyol	TBHP	50	8	42	42	7
Cr	Si Oxide	Batch	Cyol	TBHP	70	5	38	38	8
Ru Complex	Metal Oxide	Batch	Cyol	Air	25	5	71	71	2
RuO_2	Aluminosilicate	Batch	Cyol	Air	80	4	43	43	9
Pt NPs	Aluminosilicate	Batch	Cyol	Air	25	20	21	18	10
Au / Ag NPs	Solution	Batch	Cyol	O_2	150	0.25	76	76	11
Au / Cu NPs	Cu Oxide	Flow	Cyol	O_2	250	1	76	75	12
Ru	Tungstosilicate	Batch	Cyol	O_2	100	48	83	67	13
Pd NPs	Ce Oxide	Batch	Cyol	O_2	120	12	58	57	14

Table SI-1. Investigations into the production of cyclohexanone from cyclohexanol.

Cyol = Cyclohexanol, Cyone = Cyclohexanone, TBHP = tert-Butyl Hydroperoxide. * = Dehydrogenation.

Figure SI-1. Digital image taken to display the colours of the Pt/CuClP materials depending on the Pt loading. From left to the right: 7, 5, 3 and 1 wt. % Pt/CuClP samples and the un-doped framework.

Figure SI-2. PXRD patterns of all percentage loading of Pt in Pt/CuClP used materials (green curves) and blank framework (light blue curves). The peaks assigned to RbCl (blue bars) and metallic Pt (black bars) phases are indicated.

Figure SI-3. PXRD patterns of the as-synthesized (pale blue curve), reduced (pale green curve) and used (dark green curve) blank framework material.

Figure SI-4. Simulated PXRD pattern of the RbCl, rubidium chloride phase.¹⁵

Figure SI-5. Comparison between the FTIR spectra collected on the 7 wt. % catalyst after 50 min at 200° C in cyclohexanol (blue curve) and after outgassing at 200 °C at a residual pressure below $1 \cdot 10^{-3}$ mbar (red curve).

Figure SI-6. Time on stream data showing cyclohexanol conversion (bold colour) and cyclohexanone selectivity (pale colour) for the 3 (red), 5 (blue) and 7 (green) wt. % Pt/CuClP catalysts. Note: both the 1 wt. % Pt/CuClP sample and the un-doped framework showed no catalytic activity.

Figure SI-7. Section a: TEM image of the fresh 3 wt. % Pt/CuClP catalyst, instrumental magnification 50000×. The blue arrows indicate isolated Pt nanoparticles. Section b: EDS spectrum. Section C: Elemental analysis of the image in section a.

Figure SI-8. Section a: TEM image of the activated 3 wt. % Pt/CuClP catalyst, instrumental magnification 50000×. Section b: FFT of the image in section a proving the crystallinity of the CuClP framework. Section c: EDS spectrum of the sample shown in section a. Section d: Elemental analysis of the image in section a. Note - the small peaks related to the presence of Chromium (highlighted in section e) are due to the microscope column. A 20wt. % C, due to the lacey carbon film of the grid, was also detected.

Figure SI-9. Section a: TEM image of the used 3 wt. % Pt/CuClP catalyst, instrumental magnification 150000×. Section b: EDS spectrum of the sample shown in section a.

h	K	1	D _{hkl} (Å)	2-Theta	
1	1	0	12.75	6.99	
2	2	0	6.35	14.00	
1	3	0	5.77	15.66	
0	2	2	5.49	16.46	
0	4	2	3.77	23.87	
3	3	2	3.61	24.90	
3	4	1	3.42	25.76	

Table SI-2. List of the d-spacings obtained from HR-TEM images collected on theactivated 3 wt. % Pt/CuClP catalyst.

	Spot#	d-Spacing (nm)
1	1	0.9100
	2	0.9297
	3	0.5448
	4	0.5482
	5	0.3663
	6	0.3666
-	7	0.3658
a	8	0.3655 b

Figure SI-10. Section a: Fourier transform (FT) of the TEM image reported in Figure SI-9. Section b: List of *d* spacings measured on the FT shown in section a.

BIBLIOGRAPHY

- 1. Bai, G., React. Kinet. Catal. Lett., 2008, 94, 375.
- 2. Ji, D., Catal. Commun., 2007, 8, 1891.
- 3. Reddy, B., J. Mol. Catal. A., 2006, 252, 238.
- 4. Rao, G., Catal Today., 2012, 198, 140
- 5. Ni, J., Green Chem., 2009, 11, 759.
- 6. Mahdavi, V., Mater. Res. Bull., 2014, 51, 153.
- 7. Alizadeh, M., J. Mol. Catal. A., 2003, 194, 283.
- 8. Parentis, M., React. Kinet. Catal. Lett., 2002, 76, 243.
- 9. Zhan, B., JACS., 2003, 125, 2195.
- 10. Hong, Y., Chem. Commun., 2014, 50, 9679.
- 11. Huang, X., App. Catal. A., 2013, 467, 407.
- 12. Zhao, G., Green Chem., 2011, 13, 55.
- 13. Yamaguchi, K., New J. Chem., 2002, 26, 972.
- 14. Wang, H., Catal, Commun., 2014, 50, 87.
- 15. Wang, F, F, Y.; Acta Crystallographica A, 1970, 26, 377.