Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

Metastable and Nanosize Cation-Disordered Rocksalt-type Oxides; Revisit on

Stoichiometric LiMnO₂ and NaMnO₂

Takahito Sato¹, Kei Sato¹, Wenwen Zhao^{1,2}, Yoshio Kajiya³ and Naoaki Yabuuchi^{1,2,4*}

¹Department of Applied Chemistry, Tokyo Denki University, 5 Asahicho Senju, Adachi, Tokyo

120-8551, Japan

²Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, f1-30 Goryo-Ohara,

Nishikyo-ku, Kyoto 615-8245, Japan

³Technology Department, Electronic Materials Group, JX Nippon Mining & Metals Corporation,

1-2, Otemachi 1-Chome, Chiyoda-ku, Tokyo 100-8164, Japan

⁴Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai,

Hodogaya-ku, Yokohama, Kanagawa 240-8501

*Corresponding Author

E-mail: yabuuchi-naoaki-pw@ynu.ac.jp

Figure S1. Changes in XRD patterns from zigzag-layered LiMnO₂ to rocksalt LiMnO₂ during

mechanical milling.

Figure S2. A fitting result of rocksalt LiMnO₂ by Rietveld analysis. Note that the presence of

defects at Li sites is considered for the analysis, which is further discussed in the later section.

Figure S3. Charge/discharge curves of 10th cycle for zigzag layered LiMnO₂.

Figure S4. Charge/discharge curves of rocksalt LiMnO₂ before/after mixing with AB by ball milling

at 10 mA g⁻¹.

Figure S5. Comparison of SEM images of rocksalt $LiMnO_2$ before/after mixing with AB by ball milling. EDX mappings of the sample after milling with AB are also shown. Carbon is uniformly distributed in the sample after milling.

Figure S6. *Ex-situ* synchrotron XRD patterns of rocksalt Li_xMnO_2 for the initial charge/discharge

process.

Figure S7. Changes in XRD patterns of rocksalt Li_xMnO₂ upon electrochemical cycles.

Figure S8. Changes in XRD patterns of rocksalt Na_xMnO₂ for the initial charge/discharge process.

Figure S9. XAS spectra of fully charged/discharged rocksalt Li_xMnO_2 with Mn_2O_3 and MnO_2 used

as reference materials. Pre-edge data are also highlighted in the inset.

Figure S10. Rate capability of rocksalt Na_xMnO_2 . The cell was charged at 10 mA g⁻¹ and then

discharged at different rates. Sample loading was 1.85 mg cm⁻².