Supporting Information

Title: Adsorptive Catalysis of Hierarchical Porous Heteroatoms-Doped Biomass: From Recovered Heavy Metal to Efficient Pollutant Decontamination

Jing Wang,^a Qingfeng Yang,^a Weixia Yang,^a Hanna Pei,^a Liang Zhang,^a Tianshu Zhang,^a Na Hu,^b Yourui Suo,^b Jianlong Wang ^{a*}

^a College of Food Science and Engineering, Northwest A&F University, Yangling,

712100, Shaanxi, China.

^b Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining,

810008, Qinghai, P. R. China.

Figure S1. SEM image of the prepared a) CK and b) CS.

Figure S2. N₂ sorption isotherms of different biomass composites.

		textural prope	rties	element composition (wt %)					
	$\mathbf{S}_{\mathrm{BET}}$	pore	pore size						
materials	(m ² g ⁻¹)	volume	distribution	C	N	0	S		
		(cm ³ g ⁻¹)	(nm)	C	IN	0	3		
Bulk biomass	12.62	0.031	1.152	63.43	1.53	27.46	-		
СК	47.78	0.062	5.15	64.15	1.68	26.03	-		
CS	79.77	0.049	2.44	66.97	1.72	12.65	5.04		
CKS-600	66.49	0.059	4.08	63.44	2.62	12.17	4.62		
CKS-700	111.76	0.079	2.83	72.11	1.17	8.52	7.13		
CKS-800	152.08	0.481	12.54	78.18	1.05	5.89	9.42		
CKS-Cu	154.64	0.431	11.37	-	-	-	-		
Regenerated									
CKS	137.47	0.293	8.36	-	-	-	-		
CKS-Cu after	147.15	0.395	8.23	-	-	-	-		

Table S1. Physico-chemical properties of the hierarchical porous carbons.

Figure S3. XPS spectra S 2p signal deconvolution of CKS-600 and CKS-700.

Figure S4. Zeta potential of hierarchical porous CKS biomass.

Figure S5. Removal efficiency of CKS toward Cu(II) under different pH values.

pH values									
initial	1.21	2.32	3.07	4.01	5.20	6.14			
final	1.18	2.24	2.94	3.89	5.01	5.87			

Table S2. Initial (before adsorption) and finial (after adsorption) pH values

Figure S6. Adsorption capacities of CKS toward 300 ppm of Cu(II) under different adsorbent dosage.

	pesudo-second-order						
Single ions	q _e , _{exp} k ₂ (mg/g) (g/mg min)		$\begin{array}{c} q_{e,\ cal} \ (mg/g) \end{array} R^2$		Fitting equation		
Cu^{2+}	412.10	0.0002	414.14	0.997	t/q=0.029+0.002t		
Ni ²⁺	312.88	0.0009	322.58	0.996	t/q=0.011+0.003t		
Pb ²⁺	267.53	0.0003	264.12	0.998	t/q=0.047+0.004t		

Table S3. Kinetic parameters of metal ions adsorption on CKS

Table S4. Isotherm parameters of metal ions adsorption on CKS

sing q _{m,} , le (mg ions	q _{m,exp}	Langm	uir isotherm	Freundlich isotherm model				
	(mg/g)	k _L	q_{m} , cal (mg/g)	R ²	Fitting equation	K _F (mg/g)	n	R ²
Cu ² +	1356.62	0.0071	1366.67	0.991	$C_e/q_e = 0.1 + 0.0007C_e$	110.58	2.4888	0.9209
Ni ²⁺	1122.63	0.0104	1250.21	0.994	C_e/q_e =0.08+0.0008 C_e	228.40	4.0766	0.9432
Pb ² +	612.31	0.0072	619.23	0.996	$C_e/q_e=0.22+0.0016C_e$	65.75	2.8353	0.9723

Table S5. XPS analysis of Surface Functionality								
content/functionality (at.%)	CKS	CKS-Pb	CKS-Cu					
total oxygen content	43.02	19.58	15.37					
total sulfur content	10.73	1.63	1.41					
O-M	7.18	9.02	9.17					
O=C-O	4.45	3.82	2.38					

		a	asorption	capacifie	S.				
classfication	adsorbent	material	amount used	unit cost (dollar)	Cost (dollar)	total cost (dollar)	Cu ²⁺ adsorption capacity	k ₂ (g/mg min)	ref
	TT (*)							0.0025	
	Hematite $(\alpha - Fe_2O_3)$	FeCl ₃	2.7	6.52	17.60	21.75	84.46	$(C_{Cu}^{2+}, initial = 3.79 \text{ mg } \text{L}^{-1})$	1
		DI water	500	0.0226	11.3			C /	
		HCl	0.05	0.549	0.027				
	γ-Fe ₂ O ₃	DI water	200	0.0226	4.52	19.01	26.8	-	2
		FeCl ₃	5.2	6.52	33.90				
		FeCl ₂	2	3.18	6.36				
		NH4OH	1.5	0.0826	0.1239				
		Tetrameth ylammoni um	1	0.2264	0.2264				
		99% Octyl ether	N/A	N/A					
metal oxide- based		NaSO ₄	0.15 M, 250 mL	0.1042	0.56				
anoadsorbent	α -MnO ₂ (OMS-1)	MnSO ₄ C _N	_{4n2+} =0.6 M, 400 mL	0.273	11.07	1.84	57.6	-	3
		NaOH	5 M, 400 mL	0.1886	15.09				
		MgCl ₂	1M	0.537	12.24				
	α -MnO ₂ (OMS-2)	DI water	250	0.0226	5.65	10.35	83.2	-	4
	. ,	65% HNO ₃	11.5	0.41	2.46				
		KMnO ₄	2.1	1.592	3.34				
	TiO ₂ monolith	TiO ₂	4.6	8.68	39.93	18.68	398.72	-	5
		HCl	1M, 1000	0.046	46				
		5 M, tetrabutyla mmonium	N/A	8.08	N/A				
carbonhydrate	ТЕМРО	CNC	1 g	0.3	0.3	2.72	268.2	-	6

Table S6. Estimated total cost for preparing 1 g of nanoadsorbents and corresponding	
adsorption capacities.	

	oxided CNC								
		TEMPO	0.059	0.57	0.33				
		NaBr	0.325 g	0.112	0.04				
		NaClO	7.1 mL	0.19	1.35				
		Methanol	11 mL	0.063	0.7				
		NaOH	N/A	0.008	N/A				
		HCl	N/A	0.01	N/A				
	Succinic								
based-	anhydride/CN	CNC	1 g	0.3	0.3	0.78	121.6	-	6
adsorbent	С								
		Succinic	0 6 g	0.26	0.16				
		anhydride	0.05	0.20	0.10				
		Sodium							
		hydrogenc	N/A	0.018	N/A				
		arbonate							
		N,N-	5 m T	0.062	0.22				
		aimetnyla	5 mL	0.063	0.32				
	MWCNT	cetainiue				12 35	24.40		7
	SWCNT					42.55	24.49	-	/ 8
carbon-based	MWCNT					070	27.27	-	0
nanoadsorbent	carboxylic								
	acid					116.5	77	-	9
	functionalized								
								0.016	
	Graphene					2215	294	$(C_{Cu}^{2+}, initial =$	10
	118 1118								
								5 mg L ⁻¹)	
	Soy protein-	soy						5 mg L ⁻¹) 0.0046	
	Soy protein- based PEI	soy protein	1 g	0.06	0.06	1.78	136.2	$\frac{5 \text{ mg } \text{L}^{-1}}{0.0046}$ $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=}$	11
	Soy protein- based PEI hydrogel	soy protein isolate	1 g	0.06	0.06	1.78	136.2	$5 \text{ mg } \text{L}^{-1}$ 0.0046 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=}$ 100 mg L ⁻¹)	11
	Soy protein- based PEI hydrogel	soy protein isolate PEI (Mw	1 g	0.06	0.06	1.78	136.2	$5 \text{ mg } L^{-1})$ 0.0046 $(C_{Cu}^{2+}, \text{initial}^{=})$ 100 mg L ⁻¹)	11
	Soy protein- based PEI hydrogel	soy protein isolate PEI (Mw % ca.	1 g 1 g	0.06	0.06	1.78	136.2	$5 \text{ mg } \text{L}^{-1}$ 0.0046 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=}$ 100 mg L ⁻¹)	11
	Soy protein- based PEI hydrogel	soy protein isolate PEI (Mw % ca. 25000)	1 g 1 g	0.06	0.06	1.78	136.2	$\frac{5 \text{ mg } \text{L}^{-1}}{0.0046}$ $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=} 100 \text{ mg } \text{L}^{-1})$	11
biomass-based adsorbent	Soy protein- based PEI hydrogel	soy protein isolate PEI (Mw % ca. 25000) epichloroh ydrin	1 g 1 g N/A	0.06	0.06	1.78	136.2	$\frac{5 \text{ mg } \text{L}^{-1})}{0.0046}$ $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $100 \text{ mg } \text{L}^{-1})$	11
biomass-based adsorbent	Soy protein- based PEI hydrogel	soy protein isolate PEI (Mw % ca. 25000) epichloroh ydrin Soybean	1 g 1 g N/A	0.06	0.06	1.78	136.2	$5 \text{ mg } \text{L}^{-1}$ 0.0046 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=}$ $100 \text{ mg } \text{L}^{-1}$ 0.0333	11
biomass-based adsorbent	Soy protein- based PEI hydrogel soybean dregs-PAA	soy protein isolate PEI (Mw % ca. 25000) epichloroh ydrin Soybean dregs	1 g 1 g N/A 0.60 g	0.06 1.72 N/A	0.06	1.78 0.11	136.2 75.4	$5 \text{ mg } \text{L}^{-1})$ 0.0046 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $100 \text{ mg } \text{L}^{-1})$ 0.0333 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $150 \text{ mg } \text{L}^{-1})$	11
biomass-based adsorbent	Soy protein- based PEI hydrogel soybean dregs-PAA	soy protein isolate PEI (Mw % ca. 25000) epichloroh ydrin Soybean dregs	1 g 1 g N/A 0.60 g	0.06 1.72 N/A	0.06	1.78 0.11	136.2 75.4	$5 \text{ mg } \text{L}^{-1})$ 0.0046 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $100 \text{ mg } \text{L}^{-1})$ 0.0333 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $150 \text{ mg } \text{L}^{-1})$ 0.0133	11
biomass-based adsorbent	Soy protein- based PEI hydrogel soybean dregs-PAA tea waste	soy protein isolate PEI (Mw % ca. 25000) epichloroh ydrin Soybean dregs	1 g 1 g N/A 0.60 g	0.06 1.72 N/A	0.06	1.78 0.11 N/A	136.2 75.4 48	$5 \text{ mg } \text{L}^{-1})$ 0.0046 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $100 \text{ mg } \text{L}^{-1})$ 0.0333 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $150 \text{ mg } \text{L}^{-1})$ 0.0133 $(\text{C}_{\text{Cu}}^{2+}, \text{initial}^{=})$ $200 \text{ mg } \text{L}^{-1})$	11 12 13

 Sewage sludge					N/A	83	-	15
CKS	soybean dregs	1 g	8.3×10 ⁻⁷	8.3×10 ⁻⁷	0.041	1366.67	0.0002 $(C_{Cu}^{2+}, initial = 100 \text{ mg } \text{L}^{-1})$	This
	$CaSO_4$	1 g	0.022	0.022				work
	oxalate	1 g	0.019	0.019				

Detailed information: CNC, cellulose nanocrystals; DNPH, 2,4-Dinitrophenylhydrazine; PEI, polyethylenimine; PAA, poly(acrylic acid)

Figure S7. FT-IR spectra of CKS before and after Cu(II) adsorption.

Figure S8. XPS detailed studies of N 1s signal deconvolution of CKS biosorbent before and after Cu^{2+} adsorption.

Figure S9. Cu(II) removal efficiency and recycling of CKS biomass adsorbents. The initial concentration of Cu(II) is 10 mg L⁻¹.

Figure S10. a) SEM image of CKS, the arrows label the Cu nanoparticles on the surface of CKS. b) Mapping images of CKS-Cu, the scale bar is $2 \mu m$.

Figure. S11 XRD patterns of CKS before and after Cu²⁺ adsorption.

Figure. S12 XPS patterns of Cu 2p of CKS-Cu before and after Cr^{VI} reduction.

Reference:

- [1] Y.-H. Chen, F.-A. Li, J. Colloid Interface Sci., 2010, 347, 277-281.
- [2] J. Hu, G. H. Chen, I. M. C. Lo, Water Res., 2005, 39, 4528-4536.

[3] J. Pakarinen, R. Koivula, M. Laatikainen, K. Laatikainen, E. Paatero, R. Harjula, *J. Hazard. Mater.*, 2010, **180**, 234-240.

[4] R. Koivulaa, J. Pakarinenb, M. Siveniusb, K. Sirolab, R. Harjulaa, E. Paaterob, *Sep. Purif. Technol.* 2009, **70**, 53-57.

[5] W. Zhao, I. W. Chen, F. Xu, F. Huang, J. Mater. Chem. A, 2017, 5, 15724-15729.

[6] S. Hokkanen, A. Bhatnagar, M. Sillanpää, Water Res. 2016, 91, 156-173.

[7] Y. H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, B. Wei, *Carbon*, 2003, 41, 2787-2792.

[8] O. Moradi, K. Zare, M. Monajjemi, M. Yari, H. Aghaie, *Fullerenes, Nanotubes, and Carbon Nanostructures*, 2010, **18**, 285-302.

[9] J. Liu, D. Su, J. Yao, Y. Huang, Z. Shao, X. Chen, J. Mater. Chem. A, 2017, 5, 4163-4171.

[10] R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, R. Wrzalik, *Dalton Trans.*, 2013, **42**, 5682-5689.

[11] J. Liu, D. Su, J. Yao, Y. Huang, Z. Shao, X. Chen, J. Mater. Chem. A, 2017, 5, 4163-4171.

[12] M. Zhang, L. Song, H. Jiang, S. Li, Y. Shao, J. Yang, J. Li, J. Mater. Chem. A, 2017, 5, 3434-3446.

[13] B. M. Amarasinghe, P. K., W., R. A.Williams, Chem. Eng. J., 2007, 132, 299-309.

[14] V. K. Gupta, Ind. Eng. Chem. Res., 1998, 37, 192-202.

[15] S. Rio, C. Faur-Brasquet, L. Le Coq, P. Courcoux, P. Le Cloirec, *Chemosphere*, 2005, 58, 423-437.