Supporting Information

Thiol-Ene Photopolymerization of Vinyl-Functionalized Metal-

Organic Framework towards Mixed-Matrix Membranes

Chinnadurai Satheeshkumar,^{a,†} Hyun Jung Yu,^{b,†} Hyojin Park,^{c,†}, Min Kim,*^c Jong Suk

Lee,*b Myungeun Seo*a,d

^aGraduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea

^bDepartment of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea

^cDepartment of Chemistry and BK21Plus Research Team, Chungbuk National University,

Cheongju 29644, Korea

^dDepartment of Chemistry, KAIST, Daejeon 34141, Korea

[†]C.S., H.J.Y., and H.P. equally contributed to this work.

*To whom should be addressed: <u>minkim@chungbuk.ac.kr</u> (M.K.); <u>jongslee@sogang.ac.kr</u> (J.S.L.); <u>seomyungeun@kaist.ac.kr</u> (M.S.)

This information includes:

Supporting Table S1

Supporting Figures S1 – S13

Appendix

Entry	Sample	UiO-66-CH=CH ₂ loading ^a (wt% _{Expt})	UiO-66-CH=CH ₂ loading (wt% _{theo})	Polymer matrix ^b (wt%)
1	MMM(0)	0	0	100
2	MMM(60%)	61	60	40
3	MMM(50%)	51	50	50
4	MMM(35%)	36	35	65

Table S1. Composition of MMMs synthesized in this study

^{*a*}Experimental loading calculated by TGA meaurements. ^{*b*}weight ratio of PEO-250, PETM, and EDDT in the polymerization mixture was fixed as PEO-250:PETM:EDDT = 54:26:20.

Figure S1. PXRD pattern of UiO-66-CH=CH₂.

Figure S2. ¹H NMR of UiO-66-CH=CH₂ after acid digestion.

Figure S3. (a) N_2 sorption isotherm of UiO-66-CH=CH₂ obtained at 77 K. (b) Pore size distribution of UiO-66-CH=CH₂ estimated by non-local density function theory (NLDFT) analysis of the adsorption branch of the nitrogen sorption isotherm.

Figure S4. Photographs of free-standing (a) MMM(0), (b) MMM(35%), (c) MMM(50%) and (d) MMM(60%). A scale bar corresponds to 1 cm.

Figure S5. FTIR spectra of MMM(0), MMM(35%), MMM(50%), and MMM(60%) in comparison with UiO-66-CH=CH₂.

Figure S6. TGA analysis of MMM(0), MMM(35%), MMM(50%), MMM(60%) in comparison with UiO-66-CH=CH₂ (the gray color region is used to calculate the experimental composition of filler, see Table S1).

Calculation of experimental loading of filler by TGA measurement: (see the Table S1)

Let us consider,

= 1 $wt\%_{filler} + wt\%_{polymer matrix}$ $= 1 - wt\%_{filler}$(a) wt%polymer matrix Residual wt%filler. TGA = $(loss of wt\%_{filler, TGA} x wt\%_{filler}) + (loss of wt\%_{polymer matrix, TGA} x wt\%$ polymer matrix) (b) Apply equation a into b = (loss of wt%_{filler, TGA} x wt%_{filler}) + (loss of wt%_{polymer matrix, TGA} (1wt%_{filler}) (c) where, loss of wt%filler, TGA is 80% loss of wt%polymer matrix, TGA is 3% Apply this value into equation (c) Residual wt%filler, TGA $= 80\% \text{ x wt}\%_{\text{filler}} + 3\%(1 - \text{wt}\%_{\text{filler}})$ (d) where, Residual wt%filler, TGA are 30.5%, 42.7% and 50.2% for MMM(35%), MMM(50%) and MMM(60%), respectively (indicated as gray color background in Figure S6) ▶ MMM(35%) 30.5% = 77% x wt%_{ofiller} + 3% $Wt\%_{filler} = 36\%$ ➤ MMM(50%) 42.7% $= 77\% \text{ wt}\%_{\text{ofiller}} + 3\%$ = 51%Wt%_{filler} \geq MMM(60%) 50.2% = 77% x wt%_{ofiller} + 3% Wt%_{filler} = 61%

Figure S7. SEM images (a and b) and EDS data (c and d) of MMM(35%) (a and c) and MMM(60%) (b and d).

Figure S8. Cross-sectional SEM images of MMMs. (a) MMM(35%). (b) MMM(50%). (c) MMM(60%).

Figure S9. MMM prepared from 20 wt% of pristine UiO-66 (without the vinyl functionality). (a) SEM image of the surface. (b) Corresponding EDS data. (c) Cross-sectional SEM images.

Figure S10. MMM prepared from 35 wt% of pristine UiO-66 (without vinyl functionality). (a and b) SEM images of the surface at different scale bar. (c) Cross-sectional SEM images.

Figure S11. Photographs of free-standing MMM(50%) before (a) and after (b) soaking in DMF for 1 h at room temperature.

Figure S12. Surface (a) and cross-sectional (b) SEM images of MMM(50%) after the soaking in DMF for 1 h at room temperature.

Figure S13. ¹H NMR spectrum of (400 MHz, CDCl₃) of the concentrated sol fraction obtained by immersing MMM(50%) in DMF.

Appendix.

¹H NMR and ¹³C NMR spectra of the synthesized organic compounds

