
S-1

Supporting Information

Determining ideal strength and failure mechanism of 

thermoelectric CuInTe2 from quantum mechanics

Guodong Li *,a,b, Qi An c, Sergey I. Morozov d, Bo Duan a, Pengcheng Zhai a, Qingjie Zhang *,a, 

William A. Goddard III e, and G. Jeffrey Snyder b

aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University 

of Technology, Wuhan 430070, China.
bDepartment of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, 

USA.
cDepartment of Chemical and Materials Engineering, University of Nevada Reno, Reno, Nevada 89557, 

USA
dDepartment of Computer Simulation and Nanotechnology, South Ural State University, Chelyabinsk 

454080, Russia
eMaterials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, 

USA.
*Corresponding authors: guodonglee@whut.edu.cn; zhangqj@whut.edu.cn

 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2018



S-2

Explanation on how we compute the stress-strain relations

        To examine the mechanical response and failure mechanism of CuInTe2, we applied pure 

shear and tensile deformation on it by imposing the shear or tensile strain on a particular supercell 

system while allowing structural relaxation along the other five strain components (Figure. S1). 

The biaxial shear deformation was also examined to mimic the stress conditions in Vickers 

indentation experiments (Figure. S1). Here we considered a biaxial stress distribution beneath an 

indenter with a shear stress (xz) and a normal compressive stress component (zz). They are 

constrained as tanzz zz   , where o68  is the centerline-to-face angle for a Vickers 

indenter.1 The computed stress-strain relations are true stress-strain relations. The residual 

stresses for relaxation along the other strain components both in pure shear and biaxial shear 

deformations are all less than 0.2 GPa.

Figure S1. Sketch of (a) tensile load, (b) shear load, and (c) biaxial shear load.
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The ELF change against shear strain for CuInTe2 under (221)[11-1] pure shear load

Figure S2. Calculated atomic configurations combined with isosurfaces of the electron localization 

function (ELF) for shear loads along the (221)[11-1] slip system: (a) shear strain 0 corresponds to the initial 

stage, (b) shear strain 0.37 corresponds to the ideal strength, (c) shear strain 0.566 before structural 

softening, and (d) shear strain 0.658 corresponding to the highly softened structure. The ELF is represented 

by the shallow yellow region.
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The ELF change against uniaxial tensile strain for CuInTe2 under [1-10] tension 

load

Figure S3. Calculated atomic configurations combined with isosurfaces of the electron localization 

function (ELF) for tensile loads along the [1-10] tensile system: (a) tensile strain 0 corresponds to the initial 

stage, (b) tensile strain 0.196 before failure, (c) failure strain 0.208. The ELF is represented by the shallow 

yellow region.
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The ELF change against shear strain for CuInTe2 under (221)[11-1] biaxial shear 

load

Figure S4. Calculated atomic configurations combined with isosurfaces of the electron localization 

function (ELF) for biaxial shear loads along the (221)[11-1] slip system: (a) shear strain 0 corresponds to 

the initial stage, (b) shear strain 0.258 corresponds to the maximum shear stress point, (c) shear strain 

0.0.346 before failure, and (d) failure strain of 0.357. The ELF is represented by the shallow yellow region.
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