Electronic Supplementary Material (EIS) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Highly Active and Dual-Functional Self-Supported Multiphase NiS-NiS₂-

Ni₃S₂/NF Electrode for Overall Water Splitting

Feng Jing, ^{a, #} Qiying Lv, ^{a, #} Jian Xiao, ^{a, #} Qijun Wang ^a and Shuai Wang ^{a,b,*}

^{a.} State Key Laboratory of Digital Manufacturing Equipment and Technology. Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
 ^{b.} Flexible Electronics Research Center (FERC). School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

[#] These authors contributed equally to this study.

*Corresponding author: chmsamuel@mail.hust.edu.cn (Shuai Wang)

Fig. S1 Morphology of the sample. **a**, EDS spectrum. **b**, SEM image of the m-NiS_x-0.5/NF electrode. **c-d**, elemental mapping of the m-NiS_x-0.5/NF electrode, respectively.

Fig. S2 XRD diffraction pattern of the as-prepared NiS₂ supported on carbon cloth.

Fig. S3 Morphologies of the samples. SEM images of (**a**) NF, (**b**) m-NiS_x-0.1/NF, (**c**) m-NiS_x-0.2/NF, (**d**) m-NiS_x-0.5/NF, (**e**) m-NiS_x-1.0/NF, and (**f**) m-NiS_x-U/NF, respectively. Each scale bar is 5 μ m.

Fig. S4 XRD diffraction pattern of the as-prepared m-NiS_x/NF electrodes. The variation of grain sizes as the amount of sulfur powder increases.

Samples		2θ (degree)→D (nm)									
		22.3°	27.8°	30.7°	3.	5.1°	38.4°	46.2°	50.2°	53.8°	55.7°
	NiS			21.1				35.6		22.0	
m-NiS _x - 0.1/NF	NiS_2		22.1		2	0.4	41.3			22.0	
	Ni_3S_2	40.1							22.5		61.2
	NiS			32.9				36.8		23.2	
m-NiS _x - 0.2/NF	NiS_2		36.2		3	3.9	48.2			23.2	
	Ni_3S_2	46.3							66.7		64.9
	NiS			47.0				79.0		51.8	
m-NiS _x - 0.5/NF	NiS_2		23.4		6	5.3	36.1			51.8	
-	Ni_3S_2	35.6							32.1		32.9
	NiS			48.2				80.7		52.9	
m-NiS _x - 1.0/NF	NiS_2		23.4		35.1° 63.5	35.7° 35.8	36.1			52.9	
	Ni_3S_2	35.7							36.1		32.6
	NiS			47.8				80.4		53.4	
m-NiS _x - U/NF	NiS_2		23.4		35.2° 49.7	35.9° 34.7	31.3			53.4	
-	Ni ₃ S ₂	34.8							30.9		29.5

Table S1 The approximate grain sizes of each phase in different quantity of sulfur powder^{a, b}

^a All the data are the raw data. ^b Calculated with Scherrer formula $D = k\lambda/(\pi \times (FWHM/180) \times Cos\vartheta)$, here, D is the grain size of particles (nm); k is the constant (0.89), ϑ is the half of the diffraction angle, and λ is the wavelength of Cu K α radiation (1.5406 Å).

Fig. S5 XPS full spectra (**a**), the high-resolution spectra of Ni 2p (**b**), and S 2p (**c**) for the m-NiS_x-0.1/NF, m-NiS_x-0.2/NF, m-NiS_x-0.5/NF, m-NiS_x-1.0/NF, and m-NiS_x-U/NF, respectively.

Samples	Area(855.5 eV)	Area(853.2 eV)	Area(855.5 eV)/Area(853.2 eV)
m-NiS _x -0.1/NF	67134.970	59107.040	1.14
m-NiS _x -0.2/NF	51422.200	45412.700	1.13
m-NiS _x -0.5/NF	41177.070	38245.680	1.07
m-NiS _x -1.0/NF	20086.780	31799.010	0.63
m-NiS _x -U/NF	19327.250	32582.770	0.59

 Table S2
 The area ratio summary of Ni 2P_{3/2} in Ni 2P

Fig. S6 LSV curves of the catalysts sulfidization with 200 °C, 300 °C and 400 °C in 1.0 M KOH toward (a) HER and (b) OER.

Fig. S7 SEM images of (a) m-NiS_x-0.5/NF prepared at 200 $^{\circ}$ C and (b) m-NiS_x-0.5/NF prepared at 400 $^{\circ}$ C.

Fig. S8 XRD diffraction pattern of the as-prepared m-NiS_x-0.5/NF electrodes at different temperature.

Fig. S9 Cyclic voltammograms of the fresh m-NiS_x/NF electrodes in 1.0 M KOH at a scan rate of 5 mV/s.

Samples	Overpotential@ 10 mA cm ⁻² (mV)	Substrate	Reference
m-NiS _x /NF	116	Ni foam	This work
h-NiS _x	180	Ni foam	Adv. Energy Mater. 2016, 6, 1502333
Ni ₃ S ₂ NSs	260	Ni foam	J. Am. Chem. Soc.2015, 137, 14023
Fe-Ni ₃ S ₂	282	Ni foil	Small 2017, 1604161
NiFe	215	Ni foam	Nat. Commun.2015, 6, 6616
CoNi ₂ Se ₄	160	CF paper	Chem. Commun. 2017, 53, 5412
NiCoP	280	Ni foam	Nano Lett. 2016, 16, 7718
NiSe	270	Ni foam	Angew. Chem. Int. Ed. 2015, 54, 9351
Cu@CoS _x	160	Copper foam	Adv. Mater. 2017, 29, 1606200
MoO ₂	260	Ni foam	Adv. Mater. 2016, 28, 3785
NiFe LDH	240	Ni foam	Science 2014, 345, 1593
NiFe HNSs	220	GCE	J. Mater. Chem. A. 2017, 5, 7769
FeCoW	223	GCE	Science 2016, 352, 333
Ni ₂ P	290	GCE	Energy. Environ. Sci. 2015, 8, 2347

.

Table S3 Comparison of OER performance of $m-NiS_x-0.5/NF$ electrode with various well-developed electrocatalysts in 1.0 M KOH

Fig. S10 Electrochemical double-layer capacitances of the NF (**a**), m-NiS_x-0.1/NF (**b**), m-NiS_x-0.2/NF (**c**), m-NiS_x-0.5/NF (**d**), m-NiS_x-1.0/NF (**e**), and m-NiS_x-U/NF (**f**) electrodes electrocatalysis for OER, respectively.

Fig. S11 Equivalent circuit diagram of the electrochemical double-layer capacitance measurements.

Fig. S12 Chronopotentiometric curve of the m-NiS_x-0.5/NF electrode electrocatalysis for OER at $j = 20 \text{ mA cm}^{-2}$.

Fig. S13 Electrochemical double-layer capacitances of the NF (**a**), m-NiS_x-0.1/NF (**b**), m-NiS_x-0.2/NF (**c**), m-NiS_x-0.5/NF (**d**), m-NiS_x-1.0/NF (**e**), and m-NiS_x-U/NF (**f**) electrodes electrocatalysis for HER, respectively.

Fig. S14 Chronopotentiometric curve of the m-NiS_x-0.5/NF electrode electrocatalysis for HER at $j = 20 \text{ mA cm}^{-2}$.

Fig. S15 Amount of gas theoretically calculated and experimentally measured versus time for m-NiS_x-0.5/NF in 1.0 M KOH.

Fig. S16 The morphologies of m-NiSx-0.5/NF after long-term HER (a) and OER (b) tests. Each scale bar is 10 μ m.

Fig. S17 XRD patterns of fresh, post-HER, and post-OER m-NiSx-0.5/NF samples.

Fig. S18 XPS spectra of m-NiSx-0.5/NF (cathode) before and after water splitting.

Fig. S19 XPS spectra of m-NiSx-0.5/NF (anode) before and after water splitting.

Samples	water splitting cell voltage @ j (mA cm ⁻²)		Substrate	Reference		
m-NiS _x	10	1.46 V	Ni foam	This work		
N-S ₃ Ni ₂	10	1.48 V	Ni foam	Adv. Mater. 2017, 1701584		
h-NiS _x	20	1.53 V	Ni foam	Adv. Energy Mater. 2016, 6, 1502333		
NiS	10	1.64 V	Ni foam	Chem. Commun. 2016, 52, 1486		
Ni ₃ S ₂ NSs	10	1.76 V	Ni foam	J. Am. Chem. Soc. 2015, 137, 14023		
Cu@CoS _x	10	1.50 V	Copper foam	Adv. Mater. 2017, 29, 1606200		
NiFe LDH	10	1.70 V	Ni foam	Science 2014, 345, 1593		
NiFe HNSs	10	1.68 V	GCD	J. Mater. Chem. A. 2017, 5, 7769		
NiFe LDH	10	1.54 V	Copper foam	Energy. Environ. Sci. 2017, 10, 1820		
FeB ₂	10	1.57 V	Ni foam	Adv. Energy Mater. 2017, 7, 1700513		
Co ₃ Se ₄	20	1.63 V	Cobalt foam	Adv. Energy Mater. 2017, 7, 1602579		
CoO _x @CN	~20	1.55 V	GCE	J. Am. Chem. Soc. 2015, 137, 2688		
MoS ₂ /Ni ₃ S ₂	10	1.56 V	Ni foam	Angew. Chem. Int. Ed. 2016, 55, 6702		
MoS ₂ -Ni ₃ S ₂	10	1.50 V	Ni foam	ACS. Catal. 2017 , 7, 2357		

Table S4 Comparison of water-splitting performance of as-obtained m-NiS_x-0.5/NF couple to recently well-developed electrocatalysts in 1.0 M KOH