Supporting Information

_

Interface Manipulation of CO₂-philic Composite Membranes Containing Designed UiO-66 Derivatives towards Highly-efficient CO₂ Capture

Xu Jiang, Songwei Li, Shanshan He, Yongping Bai, Lu Shao.*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China, E-mail: <u>shaolu@hit.edu.cn</u>

Mixed gas tests

Mixed gas permeation properties of MPCM membrane were investigated based on a binary 50% CO₂ and 50% N₂ mixture under 35 °C. To ensure constant gas molarity in the retentate, small amounts of retentate are slowly discharged into water or the atmosphere via a silicon piping. The sampling process was initiated by evacuating the line from the receiving volume (the lower chamber: downstream) to GC by vacuum pump. The compositions of the feed and permeate were analyzed by GC. The choice of carrier gas in the GC setup is nitrogen. Detailed experimental and set-up descriptions can also be found elsewhere.^[1,2] Permeability of each gas can be determined using the following equations:

$$P_{A} = \frac{273 \times 10^{10}}{760} \frac{y_{A} \times V \times l}{AT(P_{2} \times \phi_{A} \times (76/14.7) \times x_{A})dt}$$
(1)

$$P_{B} = \frac{273 \times 10^{10}}{760} \frac{y_{B} \times V \times l}{AT(P_{2} \times \phi_{B} \times (76/14.7) \times x_{B})dt}$$
(2)

where P_A and P_B refer to the permeability of CO₂ and N₂ respectively. P_2 symbolizes the upstream feed gas pressure (psi). *x* and *y* represent molar fractions of the gas in feed and permeate sides, respectively. ΦA , ΦB indicate fugacity coefficients of respective gases in the upstream.

The mixed gas selectivity is expressed by the following equation:

$$\alpha_A = \frac{P_A}{P_B} \tag{3}$$

Fig. S1. SEM images of (a) UiO-66-NH₂ and (b) UiO-66-MA.

325 300 275 250 225 200 175 150 125 100 75 50 25 0 -25 -50 -75

Fig. S2. ¹³C MAS NMR spectra of a) UiO-66-NH₂ and b) UiO-66-MA.

Fig. S3. UV-vis diffuse reflection spectra of UiO-66-NH₂ and UiO-66-MA.

Fig. S4. Digital images of cross-linked PEO, MPCM7/3-NH₂ and MPCM7/3-MA.

Temperature (°C)

Fig. S5. DSC thermograms of cross-linked PEO and MPCMs.

Fig S6. N₂ adsorption isotherms of (a) UiO-66-NH₂ and (b) UiO-66-MA

Fig S7. Plasticization behaviours of cross-linked PEO, MPCM7/3-NH₂-2 and MPCM7/3-MA-2 reflected in CO₂ permeability

Fig S8. Cross-sectional view EDS mapping of Zr in a) MPCM7/3-MA-4 and b) MPCM7/3-NH₂-4

Table. 1. Diffusivity and solubility of CO_2 , N_2 , and CH_4 , and CO_2 diffusivity and selectivity selectivity over N_2 and CH_4 for MPCM7/3-NH₂.

	C	0 ₂	N ₂		CH ₄		CO ₂ /N ₂		CO ₂ /CH ₄	
Membrane	D ^{a)}	S ^{b)}	D	S	D	S	α_{D}	α_{s}	α_{D}	α_s
Cross-linked PEO	1.66	2.45	1.27	0.0640	1.38	0.186	1.31	38.3	1.20	13.2
MPCM7/3-NH ₂ -1	1.67	2.48	1.29	0.0660	1.35	0.187	1.30	37.5	1.23	13.2
MPCM7/3-NH ₂ -2	1.90	2.54	1.49	0.0677	1.51	0.209	1.28	37.6	1.26	12.1
MPCM7/3-NH ₂ -3	1.85	2.69	1.46	0.0673	1.52	0.205	1.27	39.9	1.22	13.1
MPCM7/3-NH ₂ -4	1.79	2.78	1.45	0.0694	1.54	0.216	1.24	40.1	1.16	12.8

^{a)} $D \times 10^{6} \text{ cm}^{2}/\text{s}$, ^{b)} $S \times 10^{2} \text{ cm}^{3}/\text{cm}^{3} \text{ cm Hg}$

Table. 2. Diffusivity and solubility of CO_2 , N_2 , and CH_4 , and CO_2 diffusivity and selectivity selectivity over N_2 and CH_4 for MPCM7/3-MA.

	C	0 ₂	N ₂		CH₄		CO ₂ /N ₂		CO ₂ /CH ₄	
Membrane	D ^{a)}	S ^{b)}	D	S	D	S	α_{D}	α_{s}	α_{D}	α_{s}
Cross-linked PEO	1.66	2.45	1.27	0.0640	1.38	0.186	1.31	38.3	1.20	13.2
MPCM7/3-MA-1	2.31	2.75	1.61	0.0794	2.12	0.189	1.43	34.6	1.09	14.6
MPCM7/3-MA-2	3.22	2.93	2.40	0.0845	3.07	0.204	1.34	34.6	1.05	14.3
MPCM7/3-MA-3	3.02	3.00	2.24	0.0946	2.74	0.219	1.35	31.7	1.10	13.7
MPCM7/3-MA-4	2.18	3.03	1.48	0.0984	2.05	0.211	1.47	30.7	1.06	14.3

^{a)}D×10⁶ cm²/s, ^{b)}S×10² cm³/cm³ cm Hg

Table. 3. Glass-transition temperatures of pristine XLPEO and MPCM7/3 membranes

Membrane	Glass-transition temperature (°C)
Cross-linked PEO	-65.5
MPCM7/3-NH ₂ -2	-63.7
MPCM7/3-MA-2	-62.5
MPCM7/3-NH ₂ -4	-61.5
MPCM7/3-MA-4	-60.6

Table. 4. Diffusivity and solubility of CO_2 , N_2 , and CH_4 , and CO_2 diffusivity and selectivity selectivity over N_2 and CH_4 for MPCM-MA.

	cc	D ₂		N ₂	С	H₄	CO	₂/N₂	CO ₂	/CH₄
Membrane	D ^{a)}	S ^{b)}	D	S	D	S	α_{D}	α_{s}	α_{D}	α_{s}
MPCM0/10-MA-	0.849	2.39	0.434	0.0802	0.590	0.173				
2							1.96	29.8	1.44	13.8
MPCM3/7-MA-2	1.59	2.47	0.802	0.0805	1.06	0.185	1.98	30.6	1.50	13.4
MPCM5/5-MA-2	2.29	2.70	1.56	0.0830	2.08	0.187	1.47	32.5	1.10	14.4
MPCM7/3-MA-2	3.22	2.93	2.40	0.0845	3.07	0.204	1.34	34.6	1.05	14.3
MPCM9/1-MA-2	4.60	3.15	3.70	0.0855	4.59	0.221	1.24	36.9	1.00	14.2

 $a^{0}D \times 10^{6} \text{ cm}^{2}/\text{s}$, $b^{0}S \times 10^{2} \text{ cm}^{3}/\text{cm}^{3} \text{ cm Hg}$

Table. 5 Mixed gas tests results.

	Perme	Selectivity					
	(Barrer)						
Membrane	CO ₂	N ₂	CO_2/N_2				
Cross-linked	366	9.2	39.8				
PEO							
MPCM7/3-MA-2	974	26.3	37.1				
MPCM9/1-MA-2	1439	38.3	37.6				

Reference:

1 J. Xia, T.-S. Chung and D. R. Paul, J. Membr. Sci., 2014, 450, 457-468

2 P. S. Tin, T. S. Chung, Y. Liu, R. Wang, S. L. Liu and K. P. Pramoda, *J. Membr. Sci.*, 2003, 225, 77-90.

-