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Figure S1 AFM images and thickness of (a-b) large and (c-d) small graphene sheets, respectively.

Figure S2 (a) XPS survey spectra of large and small graphene sheets. XPS-C1s spectrum of (b) large 

and (c) small graphene sheets.

Figure S3 In- and through-plane thermal diffusivities of AGF/EP and QIGF/EP.
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Figure S4 Deflection angle-dependent thermal conductivities of QIGF/EP composites calculated 

based on EMT model.

In order to explain the anisotropic ratio of QIGF/EP in theory, the thermal conductivity along in- 

and through-plane direction can be calculated by the effective medium theory (EMT) model, which is 

usually used to predict the thermal conductivity of laminate fillers/polymer system.1 As the model 

describes, κ∥ and κ⊥ as the function of deflection angles of laminate fillers can be estimated based on 

the equation (1) and (2), respectively:
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where κm is the thermal conductivity of the matrix material; κp is the thermal conductivity of laminate 

fillers in parallel direction; Rbd is the thermal boundary resistance between fillers and matrix; θ is the 
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deflection angles of laminate fillers; Vf is the volume fraction of fillers; h is the average thickness of 

laminate fillers. According to the previous reports,2, 3 the thermal conductivity of exfoliated graphene 

is ranged from 250 to 600 W/mK, and an average value (425 W/mK) was employed for this calculation. 

Rbd was taken to be 7.7 × 10-8 Km2/W, which were derived from literature.4 κm for the epoxy matrix 

(0.18 W/mK) was obtained by direct measurement of an epoxy. Vf was 3.1 vol% by conversion from 

the mass fraction of 5.5 wt%. h was around 15 nm by a statistical analysis of graphene sheets using 

AFM. 

As a result, the evolution of theoretical thermal conductivity as a function of deflection angles of 

graphene sheets along in- and through-plane directions is presented in Figure S4, which is predicted 

from EMT model. In our work, the average angle of graphene sheets in QIGF/EP was ≈ 41o. Based on 

this, Figure S4 indicates a good agreement between theoretical and measured thermal conductivities 

(both of κ∥ and κ⊥) of QIGF/EP. Moreover, the anisotropic ratio of theoretical value (1.88) is also 

close to the measured one.

Figure S5 (a-b) SEM images of DG/EP.
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Figure S6 Schematic of the preparation of QIGF/EP⊥ and QIGF/EP∥.

Figure S7 The variation of (a) α⊥ and (b) Cp of QIGF/EP as a function of environmental temperature.

Table S1 Comparison of thermal conductivity of our QIGF/EP composite with reported 

graphene/epoxy composites.

Filler Tc (W/mK) Fraction (wt%) Direction Reference
Graphene oxide sheets 0.85 5 Isotropic 5
Multilayer Graphene 1.5 5.7 Isotropic 6
Functionalize graphene nanosheets 1.91 4 Isotropic 7
Functionalized Graphene Flakes 1.53 10 Isotropic 8
Graphene-CNT 0.321 1 Isotropic 9
Graphene-Silica 0.29 1.5 Isotropic 10
Graphene coated PMMA balls 1.41 1 Isotropic 11
Pu foam templated graphene framework 1.51 5 Isotropic 12

2 Through-plane
Ni templated 3D graphene framework

8.8
8.3

In-plane
13

2.13 Through-plane
Hydrothermal graphene framework

0.63
1.9

In-plane
14

5.4 Through-plane
QIGF

10
5.5

In-plane
This work
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