Defect Modulation on CaZn_{1-x}Ag_{1-y}Sb (0<x<1; 0<y<1) Zintl phases and

Enhanced Thermoelectric Properties with High zT Plateaus

Min Zhu,^a Zhen Wu,^a Qian Liu,^a Tie-Jun Zhu,^b Xin-Bing Zhao,^b BaiBiao Huang,^a Xutang Tao,^a and Sheng-Qing Xia^a*

^a State Key Laboratory of Crystal Materials,
Institute of Crystal Materials,
Shandong University,
Jinan, Shandong 250100, People's Republic of China
E-mail: shqxia@sdu.edu.cn

^b State Key Laboratory of Silicon Materials Department of Materials Science and Engineering Zhejiang University Hangzhou 310027, People's Republic of China

CORRESPONDING AUTHORS FOOTNOTE: Prof. Sheng-Qing Xia, State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, ShanDong 250100; Phone: (531) 883-62519, Fax: (531) 883-62519.

Supporting Information Contents

- 1. The calculation formula of Lorenz number.
- **2.** EDS analysis on the single crystals of $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$.
- Figure S1. Powder X-ray diffraction patterns for materials with nominal compositions of CaZn_{1-x}Ag_{1-y}Sb (0<x<1; 0<y<1). The simulated pattern of CaZn_{0.40(2)}Ag_{0.20(2)}Sb is provided for compared.
- **4.** Figure S2. Powder X-ray diffraction patterns for materials with nominal compositions of $CaZn_{1-x}Ag_{1-y}Sb$ (0<x<1; 0<y<1) after SPS experiments.
- 5. Figure S3. Powder X-ray diffraction patterns for materials with nominal compositions of $CaZn_{0.3}Ag_{1-v}Sb$ (0<y<1) and $CaZn_{0.4}Ag_{1-v}Sb$ (0<y<1). The peak

of suspicious impurities is indicated by a red arrow and the simulated pattern of $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$ is provided for compared.

- 6. Figure S4. Plot of composition vs. lattice parameter of $CaZn_{(1-x)/2}Ag_xSb$ (x= 0.2, 0.3, 0.4, 0.5, 0.6).
- 7. Figure S5. Calculated electronic band structures of the $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$. Fermi level is chosen as the energy reference.
- 8. Figure S6. TG-DSC measurements on $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$, conducted in inert argon atmosphere over the temperature range of 300–1273 K.
- 9. Figure S7. Temperature dependence of the heat capacity of materials CaZn₁₋ _xAg_{1-y}Sb (0<x<1; 0<y<1).</p>
- 10. Figure S8. Based on 323K Pisarenko plot of $CaZn_{(1-x)/2}Ag_xSb$ (x= 0.2, 0.3, 0.4, 0.5, 0.6) calculated with an SPB model.
- 11. Figure S9. Temperature dependence of (a) electronic thermal conductivity and (b) lattice thermal conductivity of $CaZn_{(1-x)/2}Ag_xSb$ (x= 0.2, 0.3, 0.4, 0.5, 0.6 samples.
- 12. Figure S10. Temperature dependence of power factor $S^2\sigma$ for CaZn_{1-x}Ag_{1-y}Sb (0<x<1; 0<y<1).
- 13. Figure S11. Based on 323K Pisarenko plot of CaZn_{0.4}Ag_{1-y}Sb (y= 0.8, 0.82, 0.84, 0.86) calculated with an SPB model.
- 14. Figure S12. Temperature dependence of (a) electronic thermal conductivity and
 (b) lattice thermal conductivity of CaZn_{0.4}Ag_{1-y}Sb (y= 0.8, 0.82, 0.84, 0.86) samples.

1. The calculation formula of Lorenz number.

For most thermoelectric materials, the actual Lorenz number depends on the reduced Fermi energy $\eta = E_f/k_BT$ and the scattering parameter r, and is determined by Eq (1), in which $F_n(\eta)$ is the Fermi integration, k_B is the Boltzmann constant, e is the electron charge, and E_f is the Fermi energy. Eq (2) shows the value of L_0 for free electrons. The reduced Fermi energy η can be derived from the Seebeck coefficient by Eq (3).

$$L = \left(\frac{k_B}{e}\right)^2 \left(\frac{(r+7/2)F_{r+5/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \left[\frac{(r+5/2)F_{r+3/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)}\right]\right)$$
(1)

$$L_0 = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 \cong 2.45 \times 10^{-8} W \cdot \Omega \cdot K^{-2}$$
(2)

$$S = \pm \frac{k_B}{e} \left(\frac{(r+5/2)F_{r+3/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \eta \right)$$
(3)

2. EDS analysis on the single crystals of $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$.

Sample 1

Element	Weight%	Atomic%	Composition
Ca K	16.36	34.41	1.00
Zn L	11.37	14.66	0.42
Ag L	10.00	7.81	0.22
Sb L	62.27	43.11	1.25

Sample 2

Element	Weight%	Atomic%	Composition
Ca K	17.51	36.17	1.00
Zn L	11.57	14.66	0.40
Ag L	10.69	8.21	0.23
Sb L	60.23	40.96	1.12

Sample 3

Element	Weight%	Atomic%	Composition
Ca K	17.69	36.36	1.00
Zn L	12.04	15.17	0.41
Ag L	10.74	8.20	0.23
Sb L	59.53	40.27	1.11

Sample 4

Element	Weight%	Atomic%	Composition
Ca K	17.88	36.80	1.00
Zn L	11.22	14.16	0.38
Ag L	11.28	8.63	0.24
Sb L	59.62	40.40	1.09

Averaged Composition: $CaZn_{0.40}Ag_{0.23}Sb_{1.17}$

Figure S1. Powder X-ray diffraction patterns for materials with nominal compositions of $CaZn_{1-x}Ag_{1-y}Sb$ (0<x<1; 0<y<1). The simulated pattern of $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$ is provided for compared.

Figure S2. Powder X-ray diffraction patterns for materials with nominal compositions of $CaZn_{1-x}Ag_{1-y}Sb$ (0<x<1; 0<y<1) after SPS experiments.

Figure S3. Powder X-ray diffraction patterns for materials with nominal compositions of $CaZn_{0.4}Ag_{1-y}Sb$ (0<y<1) and $CaZn_{0.3}Ag_{1-y}Sb$ (0<y<1). The peak of suspicious impurities is indicated by a red arrow and the simulated pattern of $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$ is provided for compared.

Figure S4. Plot of composition vs. lattice parameter of $CaZn_{(1-x)/2}Ag_xSb$ (x= 0.2, 0.3, 0.4, 0.5, 0.6).

Figure S5. Calculated electronic band structures of the $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$. Fermi level is chosen as the energy reference.

Figure S6. TG-DSC measurements on $CaZn_{0.40(2)}Ag_{0.20(2)}Sb$, conducted in inert argon atmosphere over the temperature range of 300–1273 K.

Figure S7. Temperature dependence of the heat capacity of materials $CaZn_{1-x}Ag_{1-y}Sb$

(0<x<1; 0<y<1).

Figure S8. Based on 323K Pisarenko plot of $CaZn_{(1-x)/2}Ag_xSb$ (x= 0.2, 0.3, 0.4, 0.5, 0.6) calculated with an SPB model.

Figure S9. Temperature dependence of (a) electronic thermal conductivity and (b) lattice thermal conductivity of $CaZn_{(1-x)/2}Ag_xSb$ (x= 0.2, 0.3, 0.4, 0.5, 0.6) samples.

Figure S10. Temperature dependence of power factor $S^2\sigma$ for CaZn_{1-x}Ag_{1-y}Sb (0<x<1;

0<y<1).

Figure S11. Based on 323K Pisarenko plot of $CaZn_{0.4}Ag_{1-y}Sb$ (y= 0.8, 0.82, 0.84,

0.86) calculated with an SPB model.

Figure S12. Temperature dependence of (a) electronic thermal conductivity and (b) lattice thermal conductivity of $CaZn_{0.4}Ag_{1-y}Sb$ (y= 0.8, 0.82, 0.84, 0.86) samples.