High Performing Triple-Conductive Pr₂NiO_{4+δ} Anode for Proton-Conducting Steam Solid Oxide Electrolysis Cell

Wenyuan Li^a, Bo Guan^a, Liang Ma^b, Shanshan Hu^a, Nan Zhang^a, Xingbo Liu^{a,*}

 ^aMechanical & Aerospace Engineering Department, Benjamin M. Statler College of Engineering & Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
^bSchool of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China

(a) GDC+PNO 800°C 4h (ne) GDC PDF 46-0507 GDC PDF 46-0507 Pr₄Ni₃O_{9.65} PDF 50-0468 PrO₂ PDF 65-0325 20 30 40 50 60 70 80 $2\theta(^{\circ})$

Supporting materials

^{*} Corresponding author, E-mail address: Xingbo.liu@mail.wvu.edu

Fig. S1 (a) Interaction between PNO and GDC after heating at 800°C for 4h. Instead of symmetry change from orthorhombic to tetragonal, the $A_{n+1}B_nO_{3n+1}$ RP phase evolves from low order to high order form, accompanied by release of simple praseodymium oxide, (b) orthorhombic to tetragonal symmetry transition when 5% Ba is doped at A site, note that the double peak at 33° in orthorhombic turns to single peak in the tetragonal symmetry.

Fig. S2 electrical conductivity of PNO measured in dry air.

Fig. S3 Progressively decreasing polarization resistance of inert Au-BZCY electrode on BZCY electrolyte, measured in parallel experiment with PNO. No resistance saturation was observed.

Fig. S4 Measured and calculated OCV of the cathode-supported full cell, the ion transport number is around 95%, proving negligible electronic and gas leakage through the thin BZCY electrolyte layer.

Fig. S5 Dependency of polarization resistance of PNO-BZCY anode on $P_{\rm H2O}$ at 550°C measured at OCV.

Fig. S6 (a) Measured and fitted EIS of PNO-BZCY anode in 60% vapor with varying P_{O2} at 550°C under OCV, these spectra are fitted into a two-arc profile using the equivalent circuit in the inset; (b) reaction order of the fitted HF arc resistance on P_{O2} ; (c) reaction order of the fitted LF arc resistance on P_{O2}