Electronic Supplementary Information

A vertically channeled lamellar membrane for molecular sieving of water from organic solvent

Xiaoting Li, Naixin Wang*, Zheng Huang, Lilong Zhang, Ya-Bo Xie, Quan-Fu An, Shulan Ji

Figure S1. Structure of LDHs with reference.

Figure S2. The photo of the α -Al₂O₃ substrate and the CoAl-LDH membrane.

$$Co^{2^{+}} + xF^{-} \rightarrow CoF^{(x-2)^{-}}_{x}$$

$$Al^{3^{+}} + yF^{-} \rightarrow AlF^{(y-3)^{-}}_{y}$$

$$H_2NCONH_2 + H_2O \rightarrow 2NH_3 + CO_2$$

$$CO_2 + H_2O \rightarrow CO^{2^{-}}_{3} + 2H^{+}$$

$$NH_3 \cdot H_2O \rightarrow NH_4^{+} + OH^{-}$$

$$CoF^{(x-2)^{-}}_{x} + 0.5(2^{-}y)CO^{2^{-}}_{3} + yOH^{-} + nH_2O \qquad \rightarrow Co(OH)_y(CO_3)_{0.5(2^{-}y)} \cdot nH_2O + x$$

$$F^{-}$$

$$AlF^{(x-3)^{-}}_{x} + 0.5(3^{-}y)CO^{2^{-}}_{3} + yOH^{-} + nH_2O \qquad \rightarrow Al(OH)_y(CO_3)_{0.5(3^{-}y)} \cdot nH_2O + x$$

$$F^{-}$$

Figure S3. The reaction formulas with the assistance of F⁻ involved in the hydrothermal process.

Figure S4. Surface morphology of CoAl-LDH composite membranes without NH_4F . (Preparation conditions: Co(NO₃)₂·6H₂O, 21 mmol/L; Al(NO₃)₃·9H₂O, 7 mmol/L; urea, 70 mmol/L; and NH_4F , 100 mmol/L; reaction temperature, 110 °C; reaction time, 24 h)

Figure S5. Surface morphology of CoAl-LDH composite membranes after wipe off. (Preparation conditions: Co(NO₃)₂·6H₂O, 21 mmol/L; Al(NO₃)₃·9H₂O, 7 mmol/L; urea, 70 mmol/L; and NH₄F, 100 mmol/L; reaction temperature, 110 °C; reaction time, 24 h)

Figure S6. Hardness curves of the ceramic substrate and CoAl-LDH composite membrane with displacement into surface. (Preparation conditions: $Co(NO_3)_2 \cdot 6H_2O$, 21 mmol/L; Al(NO₃)₃·9H₂O, 7 mmol/L; urea, 70 mmol/L; and NH₄F, 100 mmol/L; hydrothermal temperature, 110 °C; hydrothermal time, 24 h)

Figure S7. Effects of hydrothermal time on ethanol dehydration performance of the

CoAl-LDH composite membranes.

Figure S8. Surface SEM images of a) alumina substrate and CoAl-LDH membranes with different hydrothermal time: b) 18 h; c) 20 h; d) 22 h; e) 24 h; f) 26 h. (Preparation conditions: $Co(NO_3)_2 \cdot 6H_2O$, 18 mmol/L; $Al(NO_3)_3 \cdot 9H_2O$, 6 mmol/L; urea, 60 mmol/L; and NH_4F , 100 mmol/L; hydrothermal temperature, 110 °C)

Figure S9. Effects of reaction temperature on ethanol dehydration performance of the

CoAl-LDH composite membranes.

Figure S10. Surface SEM images of a) alumina substrate and CoAl-LDH membranes with different hydrothermal temperature: b) 90 °C; c) 100 °C; d) 110 °C; e) 120 °C; f) 130 °C. (Preparation conditions: Co(NO₃)₂·6H₂O, 18 mmol/L; Al(NO₃)₃·9H₂O, 6 mmol/L; urea, 60 mmol/L; and NH₄F, 100 mmol/L; hydrothermal time, 24 h)

Figure S11. Effects of molar concentration of cobalt nitrate on ethanol dehydration

performance of the CoAl-LDH composite membranes.

Figure S12. Cross-section and surface SEM images of a) alumina substrate and CoAl-LDH membranes with different molar concentration of cobalt nitrate: b) 15 mmol/L; c) 18 mmol/L; d) 21 mmol/L; e) 24 mmol/L; f) 27 mmol/L. (Preparation conditions: hydrothermal temperature, 110 °C; hydrothermal time, 24 h)

Figure S13. Ethanol dehydration pervaporation performance with water concentration in feed.

Figure S14. Ethanol dehydration pervaporation performance with feed temperature.

Figure S15. Static contact-angle of alumina substrate and CoAl-LDH composite membranes with different molar concentration.

Figure S16. Schematic diagram of the pervaporation apparatus.

Table S1 Comparison with other membranes for water/organics separation

Membranes	Organic	Feed	Temperature	Flux	Water in	Ref
Wiembranes	organie	1 ccu	remperature	Пил	water m	Rei

	solvents	content (wt.%)	(°C)	(g/m ² h)	permeate (wt.%)	
PVA	Ethanol	90	40	410	98.2	[1]
HPA/SA	Ethanol	90	60	320	99.11	[2]
PSF	Ethanol	90	25	800	98.73	[3]
DETA/	Ethanol	90	25	1220	98.4	[4]
MPD/TMC	Ethanol	85	50	1288	87.6	[5]
PEI/	Ethanol	79.4	58.5	600	99.5	[6]
Nexar TM /	Ethanol	85	50	1160	95.8	[7]
(PAA/PEI) ₄	Ethanol	95	40	140	98.45	[8]
m-Tolidine- H-TMC/ PAN	Ethanol	90	25	2191	99.5	[9]
TDI cross- MPD/TMC	Ethanol	85	50	2000	95.8	[10]
PVA/NR/	Ethanol	95	30	3600	94	[11]
Poly(acrylo nitrile butyl	Acetic acid	99.5	30	3970	99.84	[12]
PVA/	Ethylene	80	70	2800	99.8	[13]
CS/ZIF-7	Ethanol	90	25	1206	98.35	[14]
CS/ OAS	Ethanol	90	30	37	95.7	[15]
Ultem ^R /pol yimide/	Ethanol	90	60	1800	94.7	[16]
$Cu_3(BTC)_2$	Isopropanol	90	50	400	96.46	[17]
P84/	Isopropanol	90	60	110	99.67	[18]
PBI/ZIF-8	Isopropanol	85	60	103	99.6	[19]

PERVAP ^R 2	Isopropanol	85	60	64.4	99.8	[20]
510 Dense						
Zeolite T	Ethanol	90	65	1770	99.2	[21]
Zeolite T	Isopropanol	90	65	2150	100	[21]
	isopropanor	70	05	2150	100	
Zeolite T	Isopropanol	90	75	1100	99	[22]
Zeolite T	Ethanol	90	75	2200	100	[22]
Zeolite T	Ethanol	90	75	2120	99.3	[23]
Zeolite T	Ethanol	90	75	2520	100	[23]
NaA/PES-	Isopropanol	90	75	11100	100	[24]
PI						
NaA/PES-	Ethanol	90	75	10600	100	[25]
rı NaY/	Isopropanol	90	75	2500	97.5	[25]
ceramic	10001000	<i>,</i> , , , , , , , , , , , , , , , , , ,	10		51.0	[=•]
NaY/	<i>n</i> -Butanol	95	75	2000	98.75	[25]
ceramic						
NaX	Ethanol	90	75	1900	95	[25]
I DH	Fthanol	90	75	1132	99 19	This
LDII	L'indifor	70	15	1152	<i>))</i> .1 <i>)</i>	work
LDH	Propanol	90	75	3484	100	This
	1					work
LDH	Isopropanol	90	75	2580	100	This
						work
LDH	<i>n</i> -Butanol	90	75	3200	100	This
	.	0.0		2200	100	work
LDH	Isobutanol	90	15	3300	100	I h1s
1 DU	Ethyl	00	75	4640	100	WOIK This
LUΠ	acetate	70	15	4040	100	work
	uootuto					WUIK

Supplementary references

1 V. T. Magalad, A. R. Supale, S. P. Maradur, G. S. Gokavi, T. M. Aminabhavi, Chem. Eng. J., 2010, 159, 75-83.

- 2 S. Chen, K. Yu, S. Lin, D. Chang, R. Liu, J. Membr. Sci., 2001, 183, 29-36.
- 3 W. Chao, S. Huang, S. Wei, Y. Huang, K. Liao, C. Lai, H. Tsai, K. Lee, J. Membr. Sci., 2013, 429, 34-43.
- 4 Y. Zhang, N. Le, T. Chuang, Y. Wang, Chem. Eng. Sci., 2014, 118, 173-183.
- 5 L. Krasemann, A. Toutianoush, B. Tieke, J. Membr. Sci., 2001, 181, 221-228.
- 6 G. Shi, J. Zuo, S. Tang, S. Wei, T. Chuang, Sep. Purif. Technol., 2015, 140, 13-20.
- 7 G. Zhang, W. Gu, S. Ji, Z. Liu, Y. Peng, Z. Wang, J. Membr. Sci., 2006, 280, 727-733.
- 8 Y. Huang, S. Huang, W. Chao, C. Li, Y. Hsieh, W. Hung, D. Liaw, C. Hu, K. Lee, J. Lai, *Polym. Int.*, 2014, 63, 1478-1486.
- 9 J. Zuo, J. Lai, T. Chuang, J. Membr. Sci., 2014, 458, 47-57.
- 10 S. Amnuaypanich, J. Patthana, P. Phinyocheep, *Chem. Eng. Sci.*, 2009, **64**, 4908-4918.
- 11 H. Samanta, S. Ray, P. Das, N. Singh, J. Chem. Technol. Biotechnol., 2012, 87, 608-622.
- 12 M. Shahverdi, B. Baheri, M. Rezakazemi, E. Motaee, T. Mohammadi, *Polym. Eng. Sci.*, 2013, **53**, 1487-1493.
- 13 C. Kang, Y. Huang, K. Tung, K. Chang, J. Chen, W. Hung, K. Lee, J. Lai, J. Membr. Sci., 2013, 438, 105-111.
- 14 D. Xu, L. S. Loo, K. Wang, J. Polym. Sci. Phys., 2010, 48, 2185-2190.
- 15 N. Le, Y. Tang, T. Chuang, J. Membr. Sci., 2013, 447, 163-176.
- 16 S. Sorribas, A. Kudasheva, E. Almendro, Chem. Eng. Sci., 2015, 124, 37-44.

- 17 X, Qiao, T. Chung, Chem. Eng. Sci., 2006, 61, 6816-6825.
- 18 G. Shi, T. Yang, T. Chuang, J. Membr. Sci., 2012, 415, 577-586.
- 19 X. Qiao, T. Chuang, W. Guo, T. Matsuura, M. M. Teoh, *J. Membr. Sci.*, 2005, **252**, 37-49.
- 20 H. Zhou, Y. Li, G. Zhua, J. Liu, W. Yang, Sep. Purif. Technol., 2009, 65, 164-172.
- 21 Y. Cui, H. Kita, K. Okamato, J. Membr. Sci., 2004, 236, 17-27.
- 22 X. Chen, J. Wang, D. Yin, J. Yang, J. Lu, Y. Zhang, AIChE J., 2013, 59, 936-947.
- 23 Z. Zhan, N. Ma, H. Yan, Y. Peng, Z. Wang, Y. Yan, J. Membr. Sci., 2015, 485, 94-102.
- 24 Z. Zhan, J. Shao, Y. Peng, Z. Wang, Y. Yan, J. Membr. Sci., 2014, 471, 299-307.
- 25 F. Zhang, L. Xu, N. Hu, N. Bu, R. Zhou, X. Chen, Sep. Purif. Technol., 2014, 129, 9-17.