Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary information

Alginic acid-derived mesoporous carbon (Starbon[®]) as template and reducing agent for the hydrothermal synthesis of mesoporous LiMn₂O₄ grafted by carbonaceous species

Sanghoon Kim,^a Mario De bryne,^b Johan G. Alauzun,^a Nicolas Louvain,^{a,c} Nicolas Brun,^a Duncan J. Macquarrie,^b Lorenzo Stievano,^{a,c} Bruno Boury,^a Laure Monconduit,^{a,c} P. Hubert Mutin^{a,*}

Fig. S1a. N₂ adsorption-desorption isotherm and BJH pore size distribution (desorption branch) of a) A300, b) dried expanded gel of alginic acid and c) dried expanded gel of alginic acid prepared without *tert*-butanol.

Fig. S1b. SEM images of A300.

Fig. S2. Powder X-ray diffraction patterns of LMO synthesized with LiOH:KMnO₄ ratio of a) 2:1 (LMO-HT, as reference), b) 4:1, c) 3:1, d) 1:1 and e) 1:2.

Fig. S3. Powder X-ray diffraction patterns of LMO synthesized with a 2:1 LiOH:KMnO₄ ratio using various amounts of A300 or different carbon materials: a) 100 mg A300 (LMO-HT); b) 50 mg of A300; c) 150 mg of A300; d) 50 mg of alginic acid, e) 50 mg of A450, f) 50 mg of A800, g) f) 50 mg of S300; h) 50 mg of Super P. A450 and A800 stand for expanded alginic acid

carbonized at 450 °C and 800 °C, respectively, S300 stands for expanded starch carbonized at 300 °C.

Fig. S4. Characterization of the intermediate product obtained by reaction of $KMnO_4$ with A300: a) Powder X-ray diffraction patterns showing the formation of a poorly crystalline manganese oxide phase; b) TGA in air indicating the presence of approx. 9 wt% residual A300; c) N₂ adsorption-desorption isotherm and d) BJH pore size distribution, indicating the mesoporous character of this intermediate manganese oxide/carbon composite material.

Fig. S5. Zoomed image of XRD powder X-ray diffraction patterns of a) LMO-HT, b) LMO-350, c) LMO-500, d) LMO-700 and e) LMO-Comm.

	LMO-HT	LMO-350	LMO-500	LMO-700	LMO-Comm
Lattice	8.220	8.224	8.227	8.227	8.228
parameter <i>, a</i> (Å)					

Table S1. Lattice parameter calculated for LMO materials of this study.

Fig. S6. N_2 adsorption-desorption isotherm and BJH pore size distribution (desorption branch) of a) LMO-350, b) LMO-500 and c) LMO-700

Fig. S7. Additional SEM images of a) LMO-350, b) LMO-500, c) LMO-700 (collapse of porous network can be seen in circled zones) and d) LMO-Comm.

Fig. S8. Raman spectrum of LMO-HT: D or G-band were not observed, confirming the absence of graphitic structures.

Fig. S9. Galvanostatic charge–discharge curves for a) LMO-350, b) LMO-500, c) LMO-700 and LMO-Comm at different C-rates.

Fig. S10. Cross-sectional SEM images of a) LMO-500 electrode and b) LMO-Comm electrode. Domains rich in conductive carbon black are indicated by circles.

Fig. S11. Cyclic performance of LMO-HT at 4 C for 500 cycles. First 3 cycles were tested at C/10.

Fig. S12. Galvanostatic charge–discharge curves at 0.1 C for LMO-HT electrode formulated with Starbon[®] A800 (as alternative carbon additive) and PVDF. The weight ratio of LMO-HT : A800 : PVDF is 82 : 12 : 6.