Synthesis of Mesoporous $LiMn_2O_4$ and $LiMn_{2-x}Co_xO_4$ Thin Films Using MASA Approach as Efficient Water Oxidation Electrocatalysts.

Fadime Mert Balci,¹ Irmak Karakaya,¹ Elif Pınar Alsaç,¹ Muammer Yusuf Yaman,¹ Gülbahar Saat,¹ Ferdi Karadas,^{*1,2} Burak Ülgüt,¹ and Ömer Dag^{*1,2}

¹Department of Chemistry, Bilkent University, 06800, Ankara, Turkey.

²UNAM — National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.

Figure S1. Small angle XRD patterns of fresh samples of 60 salt/P123 and various CTAB/P123 ratios, (I) 0, (II) 1, (III) 3, and (IV) 5.

Figure S2. XRD patterns of meso-LiMn₂O₄, calcined at 300-650 $^{\circ}$ C, bottom to top (indexed using PDF card of JCPDS 044-0145).

Figure S3. XRD pattern of meso-Li Mn_2O_4 , prepared using 30, 60, and 90 salt/P123 mole ratios, bottom to top, respectively.

Figure S4. $N_2(77.4K)$ sorption isotherms (a) and BJH pore size distribution plots (b) of meso-LiMn₂O₄, prepared using 30, 60, and 90 salt/P123 mole ratios.

Figure S5. Raman spectra of meso-LiMn_{1-x}Co_xO₄.

Figure S6. TEM images of meso-LiMnCoO₄ at various magnifications.

Figure S7. EDX spectra of meso-LiMn_{2-x}Co_xO₄.

Figure S8. CVs of LiMn_{2-x}Co_xO₄ with different scan rate (2-20 mV/s), x is (a) 1.5, (b) 1.0, (c) 0.5 and (d) 0.0. Inset shows linearity of current density of $Co^{2+/3+}$ oxidation peak versus scan rate.

Figure S9. Tafel plots obtained for $LiMn_{2-x}Co_xO_4$ modified electrodes at pH 13.6.

Figure S10. Chronopotentiometric experiments performed on electrodes at pH 13.6 at a current density of 1 mA cm⁻² for three hours.

Figure S11. CVs performed on electrodes before (red curves) and after (blue curves) chronopotentiometric experiment displayed in Figure S8.

Figure S12. Dependence of turnover frequencies of $LiMn_{2-x}Co_xO_4$ modified electrodes recorded at pH = 13.6

Figure S13. The IR compensated CV data for different compositions showing water oxidation.

Compounds	рН	Tafel Slope	η _{1mA}	η _{10mA}	Mass activity	Reference
		(mV dec ⁻¹)	(mV)	(mV)	At 400 mV,	
					(A g⁻¹)	
LiCoO ₂	13	48	-	-	-	[1]
De-LiCoO ₂	13	50	-	-	-	[1]
$De\text{-}LiCo_{0.33}Ni_{0.33}Mn_{0.33}O_2$	13	48	-	-	-	[1]
LT-LiCoO ₂	14	48	-	430	5.24	[2]
LiCO ₂ nanosheets	13	70	-	530	-	[3]
De-LiCO ₂ nanosheets	13	56	-	500	-	[3]
LiCO ₂ nanoparticles	13	51	-	510	-	[3]
De-LiCO ₂ nanoparticles	13	57	-	390	-	[3]
LiMn ₂ O ₄ -carbon composite	13				10 (at ~500 mV)	[4]
LiMn ₂ O ₄	14	140	550	-	1.1	[5]
LiMn _{1.5} Co _{0.5} O ₄	14	150	420	-	2.3	[5]
LiMnCoO ₄	14	120	410	530	2.76	[5]
LiMn _{0.5} Co _{1.5} O ₄	14	60	370	440	8.8	[5]
LiCoO ₂	14	50	370	410	30	[5]
$LiNi_{0.9}Co_{0.1}O_2$	14				~25ª	
$Li_{1.03}Ni_{0.66}Co_{0.21}Fe_{0.10}O_{1.95}$					~100ª	
LiMn ₂ O ₄	13.6	124	417	541	8.1	This study
LiMn _{1.5} Co _{0.5} O ₄	13.6	67	300	367	197	This study
LiMnCoO ₄	13.6	64	281	345	556	This study
LiMn _{0.5} Co _{1.5} O ₄	13.6	66	284	350	409	This study
LiCoO ₂	13.6	64	280	344	901	This study
Co _{2.25} Cr _{0.75} O ₄	14	60	~290	350	10.5 ^b	[6]
MnO _x	14	49	514	-	1.8 ^c	[7]
CoO _x	14	42	405	-	15 ^c	[7]
Ni _{0.75} Co _{0.25} O _x	14	33	312	-	452°	[7]
$Ni_{0.9}Fe_{0.1}O_x$	14	30	297	-	1065°	[7]

Table S1. A summary of electrochemical properties of lithium metalates and some of the most studied mixed metal oxides.

a,b The mass activities are recorded at a) η = 379 mV , b) η = 350 mV, and c) η = 300 mV.

References

- 1 Z. Lu, H. Wang, D. Kong, K. Yan, P. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun and Y. Cui, *Nat. Commun.*, 2014, **5**, 1.
- 2 G. Gardner, J. Al-Sharab, N. Danilovic, Y. B. Go, K. E. Ayers, M. Greenblatt and G. C. Dismukes, *Energy Environ. Sci.*, 2016, **9**, 184.
- 3 Z. Lu, G. Chen, Y. Li, H. Wang, J. Xie, L. Liao, C. Liu, Y. Liu, T. Wu, Y. Li, A. C. Luntz, M. Bajdich and Y. Cui, *J. Am. Chem. Soc.*, 2017, **139**, 6270.
- 4 L. Köhler, M. Ebrahimizadeh Abrishami, V. Roddatis, J. Geppert and M. Risch, *ChemSusChem*, 2017, **10**, 4479.
- 5 C. W. Cady, G. Gardner, Z. O. Maron, M. Retuerto, Y. B. Go, S. Segan, M. Greenblatt and G. C. Dismukes, *ACS Catal.*, 2015, **5**, 3403.
- 6 C.-C. Lin, C. C. L. McCrory, ACS Catal., 2017, 7, 443.
- 7 L. Trotochaud, J. K. Ranney, K. N. Williams, S. W. Boettcher, J. Am. Chem. Soc. 2012, **134**, 17253.