1 SUPPORTING INFORMATION

2 Toward an Alternative Approach for Preparation of Low-Temperature Titanium Dioxide

3 Blocking Underlayer for Perovskite Solar Cells

4

5 Su Htike Aung, §^{a,d,e} Lichen Zhao, §^{b,c} Kazuteru Nonomura,^a Than Zaw Oo,^e Shaik M.

6 Zakeeruddin,^b Nick Vlachopoulos,^{a,*} Tamara Sloboda,^f Sebastian Svanström,^g Ute B. Cappel,^f

7 Anders Hagfeldt,^{a,*} and Michael Grätzel^{b,*}

8

9 aLaboratory of Photomolecular Science, Institute of Chemical Science and Engineering, Swiss

10 Federal Institute of Technology in Lausanne (EPFL), EPFL-SB-ISIC-LSPM, Chemin des Alambics,

11 Station 6, CH-1015 Lausanne, Switzerland. <u>nikolaos.vlachopoulos@epfl.ch</u>,

12 anders.hagfeldt@epl.ch.

13 bLaboratory of Photonics and Interfaces, Institute of Chemical Science and Engineering, Swiss

14 Federal Institute of Technology in Lausanne (EPFL), EPFL-SB-ISIC-LPI, Chemin des Alambics,

15 Station 6, CH-1015 Lausanne, Switzerland. Michael.graetzel@epfl.ch

 $16\,$ $\,$ ^cState Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of

17 Physics, Peking University, Beijing 100871, China

18 dPhysics Department, Shwebo University, Shwebo 02261, Myanmar

- ¹⁹ ^eMaterials Research Laboratory, Department of Physics, University of Mandalay, Mandalay
 ²⁰ 05032, Myanmar
- 21 ^fDivision of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of
- 22 Technology, SE-100 44 Stockholm, Sweden
- 23 gDivision of Molecular and Condensed Matter Physics, Department of Physics and Astronomy,
- 24 Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- 25
- 26 §Su Htike Aung and Lichen Zhao contributed equally to this work.

28

29 SI-1. Photoelectron spectroscopy of underlayers

30

32 Fig. S1. Overview photoelectron spectra of TiO_2 underlayers compared to an FTO reference

33 $\,$ measured with a photon energy of 2100 eV. Inset: zoom on the spectral region where Cl 2p $\,$

34 should be observed. No Cl is seen for UL samples confirming that no Cl from the precursors

35 remains in the layers.

38 SI-2. UV-VIS Spectra of underlayers

4

- 41 Fig. S2. UV-Vis absorption spectra of Ti (IV) oxo polymer immediately after electrodeposition
- 42 (black), after sintering at 150 °C for 5 hours (red) and after sintering at 450 °C for half an hour
- 43 (blue). The interference pattern is attributed to the FTO glass support.
- 44

Samples	Т (°С)	N	V _{oc} (V)	J _{SC} (mA cm ⁻²)	FF	PCE (%)
SP-UL	450	30	1.069±0.037 (1.117)	23.5±0.5 (24.2)	0.75±0.02 (0.78)	19.0±1.0 (20.9)
ED-UL	450	30	1.067±0.0130 (1.121)	23.4±0.4 (24.1)	0.76±0.01 (0.78)	19.0±0.7 (20.5)

$46\ \ \, {\rm SI-3.}$ Statistical data of mesoscopic solar cell performance measurements.

47

48

49 Electrodeposition time 1000s and electrodeposited underlayer sintering temperature 450 °C

- 50 during 30min for all data. Best performance data in parenthesis.
- 51
- 52 V_{oc} open-circuit photovoltage
- 53 J_{SC} short-circuit current density
- 54 FF fill factor
- 55 PCE (%) solar to electricity efficiency
- 56 T: sintering temperature
- 57 t_{dep}: electrodeposition time
- 58 N: number of samples
- 59 BEST data for cells with best performance
- 60 AV average
- 61 SD standard deviation
- 62

65 conditions

6

66

67 Incident photon-to-current conversion efficiency (IPCE) measurements were performed with a

- 68 setup including a Xenon light source (spectral products AB-XE-175), a monochromator (Spectral
- 69 Products CM110), and a Keithly 2700 multimeter. The light intensity was calibrated with a
- 70 certified reference solar cell (Fraunhofer ISE).

73 SI-5. Comparison of mesoporous solar cell short-circuit photocurrents and photocurrents

74 obtained by integration of the IPCE spectrum.

75

7

76 Integrated current table and solar cell performance. These solar cells are different than the

- 77 ones included in the main text.
- 78

Sample	iple P J _{sc} (mWcm ⁻²) (mAc (devi		J _{IPCE(1)} (mAcm ⁻²) integrated from IPCE spectrum for AM 1.5G irradiance 100 mWcm ⁻²	J _{IPCE(2)} (mAcm ⁻²) integrate d from IPCE spectrum for P	J _{IPCE(2)} / J _{SC}	V _{oc} (V)	FF	PCE (%)
SP-UL	P-UL 100.6 24.0 2		23.2	23.4	0.97	1.113	0.74	19.7
ED-UL	100.4	23.7	23.4	23.5	0.99	1.124	0.74	19.7

79

80 $\,$ Electrodeposited underlayer, sintering temperature 450 $^\circ \rm C$ during 30min

- 81 SP-UL underlayer generated by spray pyrolysis
- 82 ED-UL underlayer generated by electrodeposition
- 83 P irradiance
- $84 V_{\rm OC}$ open-circuit photovoltage
- 85 J_{sc} short-circuit current density
- 86 J_{IPCE} integrated photocurrent density
- 87 FF fill factor
- 88 $\,$ PCE (%) solar to electricity efficiency

Fig. S5. IPCE spectrum and integrated photocurrent vs. wavelength

96 SI-6. Hysteresis data

- 97
- 98 Measurements were performed on cells different than these described in the main text.
- 99
- 100 Hysteresis behaviors of devices with SP-ULs, ED-ULs @450°C under 100% sun. Note. ED-UL(A)
- 101 refers prepared at room temperature and heated @450°C (30 mins).

		V _{oc} (V)	J _{sc} (mA/cm2)	FF	PCE	∆ (PCE)	
SP-UL-01	BW	1.075	23.4	0.74	18.9	1.8	
	FW	1.065	23.2	0.68	17.1		
SP-UL-02	BW	1.074	23.3	0.74	18.9	2.0	
	FW	1.061	23.4	0.68	16.9		
SP-UL-03	BW	1.073	23.3	0.75	19.0	2.3	
	FW	1.062	23.5	0.66	16.7		
ED-UL-01	BW	1.069	23.4	0.74	18.8	2.5	
	FW	1.062	23.4	0.65	16.3		
ED-UL-02	BW	1.070	23.4	0.74	18.8	2.5	
	FW	1.061	23.4	0.65	16.3	2.0	
ED-UL-03	BW	1.058	23.6	0.73	18.5		
	FW FS	1.058	23.5	0.61	15.3	3.2	

102

103 BW: Reverse direction scan, from open-circuit to short-circuit

104 FW: Forward scan, from short-circuit to open-circuit

111 Cell No SP-UL-03. BW: backward scan, from open-circuit to 0V. FW: forward scan, from 0V to

¹¹² open circuit.

115 Cell No ED-UL-01. BW: backward scan, from open-circuit to 0V. FW: forward scan, from oV to 116 open circuit.

120~ SI-7. Effect of electrochemical underlayer sintering time in the range 500s-1500s on the

- 121 mesoscopic cell performance.

Sample	t _{dep} (s)	N	V _{oc} (V)	J _{sc} (mAcm ⁻²)	FF	PCE(%)
SP-UL		3	1.109±0.008	23.8±0.1	0.75±0.00	19.6±0.2
			(1.115)	(24.0)	(0.75)	(19.8)
ED-UL	500	3	1.068±0.003	23.7±0.1	0.70±0.02	17.6±0.4
			(1.070)	(23.8)	(0.72)	(18.0)
ED-UL	800	3	1.111±0.003	23.6± 0.0	0.72±0.00	18.7±0.1
			(1.116)	(23.6)	(0.73)	(18.7)
ED-UL	1000	5	1.116±0.006	23.6±0.1	0.75±0.01	19.7±0.078
			(1.124)	(23.7)	(0.76)	(19.7)
ED-UL	1200	3	1.131±0.003	23.6± 0.1	0.73±0.003	19.4± 0.1
			(1.135)	(23.7)	(0.74)	(19.5)
ED-UL	1500	3	1.128±0.003	23.8± 0.1	0.73±0.00	19.4± 0.1
			(1.133)	(23.9)	(0.74)	(19.6)

124 Best performance data in parenthesis.

Sample	Sintering Temp. (°C)	N	V _{oc} (V)	J _{sc} (mAcm ⁻²)	FF	PCE(%)
SP-UL		10	1.059±0.036	19.2±2.7	0.68±0.04	15.9±1.2
			(1.034)	(23.0)	(0.69)	(17.4)
ED-UL	150	10	1.040±0.060	19.2±2.7	0.56±0.11	11.5±2.8
			(1.034)	(23.0)	(0.59)	(14.1)
ED-UL	450	10	1.059±0.036	21.9± 1.9	0.68± 0.04	15.9± 1.2
			(1.079)	(23.5)	(0.69)	(17.4)

130 Best performance data in parenthesis.