Core-satellite structured Z-scheme catalyst $Cd_{0.5}Zn_{0.5}S/BiVO_4$ for

highly efficiency and stable photocatalytic water splitting

Chao Zeng,[†] Yingmo Hu,^{*,†} Tierui Zhang,[‡] Fan Dong,[§] Yihe Zhang,[†] Hongwei Huang *,[†]

[†]Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China

[‡]Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[§]Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067, China

*E-mail: huyingmo@cugb.edu.cn, hhw@cugb.edu.cn

Fabrication of Cd_{0.5}Zn_{0.5}S-CoO_x(0.5 %)/BiVO₄

 $CoO_x(0.5 \text{ wt\%})/BiVO_4$ was prepared as fallows. BiVO_4 was dispersed in a corundum crucible containing 530 ul of $Co(NO_3)_2$ aqueous (80 mmol/L) solution. The crucible was dried at 60 °C for 3 h in air. Then it was calcined at 400 °C for 2 h in air. After cooling to room temperature, the sample was ground into powder.

 $Cd_{0.5}Zn_{0.5}S-CoO_x(0.5\%)/BiVO_4$ was obtained via the following route. $CoO_x(0.5\%)/BiVO_4$ was dispersed in a beaker containing 30 ml of deionized water with ultrasonic and then certain amount of $Cd(AC)_2 \cdot 2H_2O$ and $Zn(AC)_2 \cdot 2H_2O$ were added into the above suspension liquid. Whereafter, quantitive thioacetamide was added into the above suspension. Then the beaker (sealed with plastic wrap) was put into an 80 °C water bath for 6 h with magnetic stirring. After natural cooling, the product was collected by centrifugation and rinsed repeatedly with distilled water and ethanol, and then dried at 60 °C for 10 h in air.

Scheme. S1 Three types of charge transfer mechanism for heterojunction photocatalysts.

Scheme. S2 The schematic illustration of the preparation process for CZS- $BiVO_4$ composite photocatalysts.

Fig. S1 SEM image and size distribution histogram (calculated by the software of Image J) of BiVO₄ sample.

Fig. S2 SEM images of CZS-BiVO₄-1, CZS-BiVO₄-3, and CZS-BiVO₄-5 samples.

Fig. S3 EDX spectrum for CZS-BiVO₄-3 sample.

Fig. S4 XRD pattern of $Cd_{0.5}Zn_{0.5}S$.

Fig. S5 Apparent rate constants of H_2 evolution for $Cd_{0.5}Zn_{0.5}S$, and CZS-BiVO₄ composite samples under visible light illumination.

The TOF of Pt atoms for CZS-BiVO₄-3 sample under visible light irradiation for 4 h is calculated as following:

 $[TON] = [9.01165 * 10^{-3} * 0.05 * 4] / [0.05 * 3\% / 195.084] = 234.4$ $[TOF] = [TON] / t = 234.4 / 4 = 58.6 h^{-1}$

Fig. S6 Typical XPS survey spectra (**a**), high-resolution XPS spectra of Cd (**b**), Zn (**c**), and S (**d**), for CZS-BiVO₄-3 sample before and after photocatalytic reaction.

Fig. S7 SEM image of CZS-BiVO₄-3 sample after photocatalytic reaction.

Fig. S8 Nitrogen adsorption/desorption isotherms (a) and pore diameter distribution (b) of $BiVO_4$, CZS- $BiVO_4$ -3, and $Cd_{0.5}Zn_{0.5}S$ samples.

Fig. S9 EIS Nynquist plots for $BiVO_4$, CZS- $BiVO_4$ -3, and $Cd_{0.5}Zn_{0.5}S$ samples.