Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Aziridine-Functionalized CNTs as Efficient Electrocatalysts for the Selective CO2 Reduction to CO

G. Tuci et al.

# How to Teach an Old Dog New (Electrochemical) Tricks: Aziridine-Functionalized CNTs as Efficient Electrocatalysts for the Selective CO<sub>2</sub> Reduction to CO

Giulia Tuci,<sup>a,b</sup> Jonathan Filippi,<sup>a</sup> Housseinou Ba,<sup>c</sup> Andrea Rossin,<sup>a</sup> Lapo Luconi,<sup>a</sup> Cuong Pham-Huu,<sup>c,\*</sup> Francesco Vizza <sup>a,\*</sup> and Giuliano Giambastiani <sup>a,c,d\*</sup>

<sup>*a*</sup> Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 – 50019, Sesto F.no, Florence, Italy. \*E-mail: <u>francesco.vizza@iccom.cnr.it</u>, <u>giuliano.giambastiani@iccom.cnr.it</u>

<sup>b</sup> Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.

<sup>c</sup> Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087 Strasbourg Cedex 02, France. \*Email: <u>cuong.pham-huu@unistra.fr</u>

<sup>d</sup> Kazan Federal University, 420008 Kazan, Russian Federation.

#### Contents:

| Fig. S1. XPS N 1s core regions of N <sup>Az</sup> -MW (1), N <sup>AzBoc</sup> -MW (2) and N <sup>Acr</sup> -MW (3)                                                                                                            | S2         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Fig. S2. XPS N 1s core region of 1 after air and CO <sub>2</sub> exposure                                                                                                                                                     | S3         |
| Table S1. Elemental analyses and acid-base titrations on N <sup>X</sup> -MW samples (X = Az, AzBoc, Acr)                                                                                                                      | S3         |
| Fig. S3. CVs of MWCNT/Cc and 1-3/Cc as electrocatalysts under N <sub>2</sub> - and CO <sub>2</sub> -saturated environment                                                                                                     | S4         |
| <b>Fig. S4</b> . Home-made 3D-printed <i>ABS</i> three-electrode cell equipped with an [Ag][AgCl][KCl <sub>sat</sub> ] reference electrode, a Pt counter electrode and a gas collector cone on the top for sampling volatiles | S4         |
| Fig. S5. GC traces of gas-phases for electrolysis runs at -1.25 and -1.50V with 1/Cc                                                                                                                                          | S5         |
| <b>Fig. S6.</b> Total current densities for CO <sub>2</sub> RR with 1-3/Cc and MWCNT/Cc in the -0.8 ÷ -1.6 V range                                                                                                            | S6         |
| Fig. S7. XPS survey spectra of plain carbon cloth (Cc), freshly prepared 1/Cc and exhaust 1/Cc                                                                                                                                | <b>S</b> 7 |
| Table S2. Relative at.% of main elements from the XPS survey spectra of carbon cloth (Cc), and 1/Cc before and after use in electrocatalysis                                                                                  | S7         |
| <b>Fig. S8.</b> DFT optimized structures of aziridine NBoc- and NH-carbonate groups as edge or basal plane dangling moieties on a polycyclic aromatic hydrocarbon cluster model                                               | <b>S</b> 8 |
| <b>Table S3.</b> Net Bader Charges (q) of the $C^{\alpha}sp^3/C^{\alpha}sp^2$ atoms on DFT optimized N-heterocycles as edge or basal-<br>plane dangling fragments of a polycyclic (hetero)aromatic hydrocarbon cluster        | <b>S</b> 8 |
| References                                                                                                                                                                                                                    | S9         |



**Fig. S1.** N 1s core regions and relative fits for the high resolution XPS spectrum of  $N^{Az}-MW$  (1),  $N^{AzBoc}-MW$  (2) and  $N^{Acr}-MW$  (3). A minor shoulder in 3 (at higher binding energy) is ascribed to commonly observed surface contaminations.<sup>1-3</sup>

Aziridine-Functionalized CNTs as Efficient Electrocatalysts for the Selective CO<sub>2</sub> Reduction to CO



**Fig. S2.** N 1s core region and relative fit for the high resolution XPS spectrum of N<sup>Az</sup>-MW sample as freshly prepared (a), after sample exposure on air for few minutes (b) and after a forced exposure to a stream of CO<sub>2</sub> (atm. press.) for 1 h (c). N 1s components at higher binding energies (400.9 and 401.0 eV) in Fig. S2b and S2c are attributed to the formation of amine-carbonate whereas components at 399.1 eV belong to free aziridine groups.

|                                   | (Elemental analyses) |      | (acid-base titration) | $\mathbf{N}0/a$ |
|-----------------------------------|----------------------|------|-----------------------|-----------------|
|                                   | N%                   | С%   | N%                    | IN %0"          |
| N <sup>Az</sup> -MW (1) (1° run)  | 0.69                 | 95.2 | 0.71                  |                 |
| N <sup>Az</sup> -MW (1) (2° run)  | 0.86                 | 95.8 | 0.64                  | 0.73            |
| $N^{Az}-MW(1)_{(3^{\circ} run)}$  | 0.83                 | 94.9 | 0.66                  |                 |
| $N^{AzBoc}$ -MW (2) (1° run)      | 0.86                 | 91.0 | -                     |                 |
| $N^{AzBoc}$ -MW (2) (2° run)      | 0.79                 | 91.5 | -                     | 0.81            |
| $N^{AzBoc}$ -MW (2) (3° run)      | 0.77                 | 91.1 | -                     |                 |
| $N^{Acr}-MW(3)_{(1^{\circ} run)}$ | 1.64                 | 93.1 | 1.32                  |                 |
| $N^{Acr}-MW(3)_{(2^{\circ} run)}$ | 1.52                 | 92.5 | 1.30                  | 1.42            |
| $N^{Acr}-MW(3)_{(3^{\circ} run)}$ | 1.56                 | 93.2 | 1.20                  |                 |
| MWCNTs                            | -                    | 97.2 | -                     | -               |

**Table S1**. Elemental analyses and acid-base titrations on  $N^X$ -MW samples (X = Az, AzBoc, Acr) for the determination of the  $N^X$  loading. Values are determined for each sample through three independent runs. <sup>*a*</sup> Final  $N^X$  content measured as average value from Elemental analysis and acid-base titration.



**Fig. S3.** Cyclic voltammograms for electrocatalysts MWCNT/Cc (**A**), **1**/Cc (**B**), **2**/Cc (**C**) and **3**/Cc (**D**) under a CO<sub>2</sub>-saturated 0.1 M KHCO<sub>3</sub> solution (colored curves). For the sake of completeness, CV profiles recorded under N<sub>2</sub> saturated environment are also outlined (black curves). Potentials were linearly swept in the -1.6 to 0.0 V at a scan rate of 10 mV s<sup>-1</sup> vs. Ag/AgCl/KCl<sub>sat</sub> and then re-scaled towards the reversible hydrogen electrode (RHE) taking into account the pH value of the respective solutions. *E* (vs. RHE) = *E* (vs. Ag/AgCl) + 0.197 V + 0.0591\*pH. pH of the N<sub>2</sub> saturated 0.1 M KHCO<sub>3</sub> solution: 8.3; pH of the CO<sub>2</sub> saturated 0.1 M KHCO<sub>3</sub> solution: 6.8.



**Fig. S4.** Home-made 3D-printed  $ABS^4$  three-electrode cell operating in a 0.1M KHCO<sub>3</sub> solution, equipped with an [Ag][AgCl][KCl<sub>sat</sub>] reference electrode, a Pt counter electrode and a gas collector cone on the top for the sampling of the produced volatiles.

Aziridine-Functionalized CNTs as Efficient Electrocatalysts for the Selective CO2 Reduction to CO



**Fig. S5.** GC-MS traces of volatile products for two CO<sub>2</sub>RR runs with 1/Cc as electrocatalyst at -1.25 and -1.50 V vs. [Ag][AgCl][KCl<sub>sat</sub>] after 45 min and 15 min electrolysis time, respectively, at constant potential value. Peaks (from left to right) are: H<sub>2</sub> (ret. time  $\approx$  3.4 min), N<sub>2</sub> (ret. time  $\approx$  4.0 min), CO (ret. time  $\approx$  4.2 min); CO<sub>2</sub> (ret. time  $\approx$  6.4 min). Peak areas are corrected according to calibration curves registered previously for each gas (H<sub>2</sub> correction factor: 138.8, CO correction factor: 7189.3).



**Fig. S6.** Total current densities measured for CO<sub>2</sub>RR with **1-3**/Cc and MWCNT/Cc in the -0.8  $\div$  -1.6 V range *vs*. Ag/AgCl/KCl<sub>sat</sub> as the reference electrode. Inset refers to the magnification of  $J_{\text{tot}}$  profiles at the lower overpotentials where electroreduction starts.



**Fig. S7.** XPS survey spectra of plain Teflonised carbon cloth (Cc) (black line), the freshly prepared 1/Cc (blue line) and used 1/Cc (orange line). The minor component at 379 eV in the spectrum of 1/cc after use is ascribed to K 2*s* component due of residual KHCO<sub>3</sub> traces. The primary K 2*p* component overlaps with C 1*s* region.<sup>5, 6</sup>

| Sample                  | O (at.%) | N (at.%) | C (at.%) | F (at.%) | O/C ratio | N/C ratio |
|-------------------------|----------|----------|----------|----------|-----------|-----------|
| Carbon cloth (Cc)       | 0.9      | 0        | 59.4     | 39.7     | -         | -         |
| 1/Cc – freshly prepared | 4.3      | 2.2      | 71       | 22.5     | 0.06      | 0.03      |
| 1/Cc - after use        | 6.8      | 1.9      | 73.2     | 18.1     | 0.09      | 0.03      |

**Table S2**. Relative at.% of main elements from the XPS survey spectra of plain carbon cloth (Cc), the freshly prepared 1/Cc and the 1/Cc after use.

Aziridine-Functionalized CNTs as Efficient Electrocatalysts for the Selective CO2 Reduction to CO



**Fig. S8.** DFT optimized structures of aziridine NBoc- and NH-carbonate groups as edge or basal plane dangling moieties on a polycyclic aromatic hydrocarbon cluster model. The same cluster with a pyridinic edge N-site has also been optimized to calculate the Bader atomic charges at the neighboring  $C^{\alpha}$  atoms. TEM micrograph refers to a bundle portion of sample 1.

| <b>Optimized samples</b>     | $q(C^{\alpha}sp^3)$ | $q(C^{\alpha}sp^2)$ |
|------------------------------|---------------------|---------------------|
| $1^{CO2\#}/Cc - basal$       | +0.83               | +3.93               |
| 1 <sup>CO2#</sup> /Cc - edge | +0.60               | +3.94               |
| 2/Cc – basal                 | +0.87               | +3.93               |
| 2/Cc - edge                  | +0.23               | +3.18               |
| pyridinic edge group         | -                   | +1.32               |

**Table S3**. Net Bader Charges (q) of the  $C^{\alpha}sp^{3}/C^{\alpha}sp^{2}$  atoms on DFT optimized N-heterocycles as edge or basal-plane dangling fragments of a polycyclic (hetero)aromatic hydrocarbon cluster.

Aziridine-Functionalized CNTs as Efficient Electrocatalysts for the Selective CO<sub>2</sub> Reduction to CO **References and Notes.** 

- 1. M. K. Daletoua, F. Paloukisa and A. Stefopoulosa, *ECS Trans.*, 2009, **25**, 1915-1924
- 2. C. A. Dyke, M. P. Stewart, F. Maya and J. M. Tour, *Synlett*, 2004, 155-160
- 3. B. K. Price and J. M. Tour, J. Am. Chem. Soc., 2006, **128**, 12899-12904
- 4. *ABS* (Acrylonitrile-Butadiene-Styrene) is a common base-resistant thermoplastic polymer for 3D-printing.
- 5. C. Ning, P. Hadi, M. Xu, C. S. Ki Lin and G. McKay, *ACS Sustainable Chem. Eng.*, 2016, 4, 2980-2989
- 6. F. Qian, X. Li, L. Tang, S. K. Lai, C. Lu and S. P. Lau, AIP Adv., 2016, 6, 075116