Supporting Information

Hierarchical Fe₂O₃@CNF Fabric Decorated with MoS₂ Nanosheets as Robust Anode for Flexible Lithium-ion Battery Exhibiting Ultrahigh Areal Capacity

Xueyan Huang, ^a Xin Cai,^a Donghui Xu, ^a Wenyan Chen, ^a Shuanjin Wang, ^b Wuyi Zhou, ^a Yuezhong Meng,^b Yueping Fang, ^a and Xiaoyuan Yu^{a*}

^aCollege of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China. E-mail: <u>yuxiaoyuan@scau.edu.cn</u>.

^bKey Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, *PR China*.

Keywords: Flexible lithium-ion battery, MoS_2 , Fe_2O_3 @CNFs, High capacity anode

Fig. S1. The SEM images of (a) CNF and (b) $CNF@MoS_2$

Fig. S2. The energy-dispersive X-ray spectroscopy (EDX) spectrum of various elements for $Fe_2O_3@CNFs@MoS_2$

Fig. S3. (a)The charge–discharge curves of $CNF@MoS_2$ at a current density of 0.2 A g^{-1} and (b) cycling performance and coulombic efficiency of $CNF@MoS_2$ at a current density of 0.2 A g^{-1} .

Fig. S4. SEM images for (a-b) Fe₂O₃@CNFs and (c-d) Fe₂O₃@CNFs@MoS₂ fabric electrode after 50 cycles.

Element Line	Net Counts Weight % Atom		Atom %	
СК	3772	12.38	30.95	
NK	1431	2.96	6.34	
ОК	10640	12.27	23.04	
S K	31798	21.94	20.55	
Fe K	17966	14.71	7.91	
Мо К	11369	35.74	11.19	
Total		100.00	100.00	

Table S1. The quantitative results of various elements for $Fe_2O_3@CNFs@MoS_2$

		1 1	2		
Materials	1 st capacity	Cycle capacity	Rate Capacity	Electrode	reference
	(mAh g ⁻¹ /mA g ⁻¹)	(mAh g ⁻¹ /cycles/mA g ⁻¹)	(mAh g ⁻¹ /cycles/mA g ⁻¹)		
γ-Fe ₂ O ₃ @CNTs	1653.4/100	860/400/500	464.4/210/10000	Powder	[1]
Fe ₂ O ₃ -CNF	1214/200	820/100 /200	262/65/5000	Flexible	[2]
Fe ₂ O ₃ -Carbon cloth	1300/200	99/100/5000	59/60/10000	Flexible	[3]
Fe ₂ O ₃ /CNFs	1008/50	488/75/50	288/100/500	Flexible	[4]
CNFs@MoS ₂	1489/100	688/300/1000	864/60/5000	Powder	[5]
PCNF@MoS2	954/50	736/50/50	532/25/1000	Flexible	[6]
MoS ₂ -cBC	1313/100	581/1000/1000	267/50/4000	Flexible	[7]
MoS ₂ -r-GO-PEO	1240/100	890/100/100	600/40/1000	Flexible	[8]
CNF@MoS2-GO	1225/200	680/250/500	780/32/2500	Flexible	[9]
MoS ₂ /ACF cloth	1262/200	635/200/200	441/45/1500	Flexible	[10]
Fe ₂ O ₃ @CNFs@MoS ₂	1465/200	938/300/200	304/60/5000	Flexible	This work

 Table S2. Comparison of electrochemical performance of similar materials which

 were reported previously

References

[1] X. Lv, J. Deng, B. Wang, J. Zhong, T. Sham, X. Sun, X. Sun, *Chem. Mater.*, 2017, 29, 3499-3506

[2] X. Zhang, H. Liu, S. Petnikota, S. Ramakrishna, H.J. Fan, J. Mater. Chem. A, 2014, 2, 10835-10841.

[3] M. Balogun, Z. Wu, Y. Luo, W. Qiu, X. Fan, B. Long, M. Huang, P. Liu, Y. Tong, J. Power Sources, 2014, 308, 7-17.

[4] L. Ji, O. Toprakci, M. Alcoutlabi, Y. Yao, Y. Li, S. Zhang, B. Guo, Z. Lin, X. Zhang, *Acs Appl. Mater. Interfaces*, 2012, 4, 2672–2679.

[5] F. Zhou, S. Xin, H. Liang, L. Song, S.Yu, Angew. Chem. Int. Edit., 2014, 53, 11552-11556.

[6] S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q. Zhang, G. Cao, *J. Mater. Chem. A*, 2014, **2**, 7862-7872.

[7] F. Zhang, Y. Tang, Y. Yang, X. Zhang, C. Lee, *Electrochim. Acta*, 2016, **211**, 404-410.

[8] Y. Liu, X. Zhu, Z. Duan, X. Xie, Chem. Commun., 2013, 49, 10305-10307.

[9] F. Xiong, Z. Cai, L. Qu, P. Zhang, Z. Yuan, O. Asare, W. Xu, C. Lin, L. Mai. *Acs Appl. Mater. Interfaces*, 2015, **7**, 12625–12630.

[10] C. Wang, W. Wan, Y. Huang, J. Chen, H. Zhou, X. Zhang, *Nanoscale*, 2014, 6, 5351–5358.