Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Structure-designed synthesis of yolk-shell hollow ZnFe₂O₄/C@N-doped carbon sub-microspheres as a competitive anode for high-performance Li-ion batteries

Linrui Hou^{*a*}, Ruiqi Bao^{*b*}, Yanru Zhang^{*b*}, Xuan Sun^{*a*}, Jinyang Zhang^{*a*}, Hui Dou^{*c*}, Xiaogang Zhang^{*c*}, Changzhou Yuan^{*a*,*}

^a School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
 ^b School of Materials Science & Engineering, Anhui University of Technology, Ma'anshan,

243002,

^c Key Laboratoray for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, P. R. China

* Email: mse_yuancz@ujn.edu.cn; ayuancz@163.com (Prof. C.Z. Yuan)

Fig. S1 (a) FESEM and (b) TEM images of the H-ZFO-O

Fig. S2 XRD pattern of theH-ZFO-O, H-ZFO-O@SiO₂ and H-ZFO-C@SiO₂@C samples as indicated

Fig. S3 FT-IR spectrum of the H-ZFO-O

Fig. S4 Crystallological structure of the spinel ZFO

Fig. S5 Typical Raman spectra of (a) H-ZFO-C and (b) H-ZFO-C@void@C products

Fig. S6 Zn XPS spectrum for the H-ZFO-O and H-ZFO-C@void@C products

Fig. S7 Typical FESEM images of (a) H-ZFO-O@SiO₂, (b) H-ZFO-O@SiO₂@PDA, (c) H-ZFO-

 $C@SiO_2@C \ and \ (d)H-ZFO-C@void@C \ products$

 Table S1 Corresponding collection of SSA, average pore size and pore volume for the H-ZFO-C

 and H-ZFO-C@void@C samples

Samples	SSA (m ² g ⁻¹)	Average pore size (nm)	Pore volume (cm ³ g ⁻¹)
H-ZFO-C	~16.1	~17.6	~0.09
H-ZFO-C@void@C	~67.9	~12.7	~0.16

Fig. S8 (a) Capacities of the H-ZFO-C, H-ZFO-C/C and H-ZFO-C@void@C anodes as a function of current density, and (b) comparison in rate capability of the H-ZFO-C, H-ZFO-C/C and H-ZFO-C@void@C with other ZFO/C composite anodes

References:

[1] X. Y. Yao, J. H. Kong, C. Y. Zhao, D. Zhou, R. Zhou and X. H. Lu, *Electrochim. Acta*, 2014, **146**, 464.

[2] Y. C. Dong, Y. Xia, Y. S. Chui and C. W. Cao and J. A. Zapien, *J. Power Sources*, 2015, 275, 769.

[3] J. J. Cai, C. Wu, Y. Zhu, P. K. Shen and K. L. Zhang, *Electrochim. Acta*, 2016, 187, 584.

[4] L. M. Yao, X. H. Hou, S. J. Hu, J. Wang, M. Li, C. Su, M. O. Tade, Z. P. Shao and X. Liu, *J. Power Sources*, 2014, **258**, 305.

[5] C. Z. Yuan, H. Cao, S. Q. Zhu, H. Hua and L. R. Hou, J. Mater. Chem. A, 2015, 3, 20389.

[6] R. Q. Bao, Y. R. Zhang, Z. L. Wang, Y. Liu, L. R. Hou and C. Z. Yuan, *Mater. Lett.*, 2018, **224**, 89.

Fig. S9 Cycvling performance of the H-ZFO-C/C electrode at a current density of 1000 mA g^{-1}