Supporting Information

Significant improvement in thermoelectric performance of Cu-deficient $Cu_{4-\delta}Ga_4Te_8$ (δ =1.12) chalcogenide through an addition of Sb

Jiaolin Cui,^{a*} Junhao Zhu,^{a,b} Zhongkang Han,^{c*} Yong Luo^b

Figure S1 (a) XRD patterns of the powders $Cu_{4-\delta}Ga_4Sb_xTe_8$ (*x*=0, 0.1, 0.25, 0.4, 0.5, 0.6, 0.7) at RT; (b) The lattice constants *a* and *c* as a function of *x* value.

Figure S2 (a) Selected area electron diffraction (SAED) pattern of the sample Cu_{4- δ}Ga₄Sb_xTe₈ at *x*=0.6; (b) High resolution TEM (HRTEM) image, an inset is an magnified image, where the *d* spacing between the (112) crystal planes is ~0.34 nm.

Figure S3 The results from the first principles calculation. (A) Upper panel: the crystal structures of $Cu_{24}Ga_{32}Sb_yTe_{64}$ (*y*=0, 2, 4, 6, 8) upon occupation of Sb in the Cu sites. The structures from left to right in sequence correspond to *y*=0, 2, 4, 6 and 8. Blue balls circled represent Sb atoms that occupy Cu sites; (B) Lower panel: the density of States (DOS) with different Sb atoms in the unit cell. It was observed that the Fermi level (*E*_f) gradually moves to the inner side of the conduction band, and the bandgap narrows gradually with an increase in Sb content. *d*_H represents the formation of energy.

Figure S4 (a) High temperature XRD patterns of the $Cu_{4-\delta}Ga_4Sb_{0.6}Te_8$; (b) Corresponding lattice constants *a* and *c* at different temperatures.