Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Pt-like catalytic behavior of MoNi decorated CoMoO₃ cuboid arrays for the hydrogen evolution reaction

Dewen Wang,^{a,b} Ce Han,^a Zhicai Xing,^a Qun Li,^{a,b} and Xiurong Yang^{a,b,*}

^a.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

^{b.} University of Science and Technology of China, Hefei 230026, China

*E-mail: xryang@ciac.ac.cn

Experimental Section

Materials

Nickel foam (NF) was purchased from Shenzhen Green and Creative Environmental Science and Technology Co. Ltd. KOH, Absolute alcohol and $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ were purchased from Beijing Chemical Corp. $Co(NO_3)_2\cdot 6H_2O$ was purchased Xilong Scientific Co., Ltd. Pt/C (20 wt% Pt on Vulcan XC-72R) and Nafion (5 wt%) were purchased from Sigma-Aldrich. All chemicals were used as received without further purification. The water used throughout all experiments was purified through a Millipore system.

Synthesis of MoNi/CoMoO₃/NF

A piece of Ni foam (2 cm × 4 cm) was cleaned by ultraphonic in HCl solution for 10 min to dissolve the surface oxide layer, and then washed with deionized water several times. Then 40mmol Co(NO₃)₂·6H₂O and 10 mmol (NH₄)₆Mo₇O₂₄·4H₂O were dispersed in 30 mL deionized water and stirred for 30 min. The cleaned Ni foam was submerged into the solution and transferred into a 50 mL Teflon-lined stainless steel autoclave. The autoclave was heated to 150 °C for 6 h in an electric oven, then cooled down to room temperature. The product was washed with water several times, then dried in an oven at 60 °C to obtain NiMoO₄-MoO₃-CoMoO₄/NF precursor (NiMoO₄, CoMoO₄ and MoO₃ denoted as NiMoO₄-MoO₃-CoMoO₄/NF), the mass loading of NiMoO₄-MoO₃-CoMoO₄ was 50.7 mg cm⁻². The precursor was then subject to the tube furnace at 500 °C for 2 h in H₂/Ar (v/v, 5/95) reduction atmosphere to achieve MoNi/CoMoO₃/NF (mass loading: 40.5 mg cm⁻²). Other samples could be obtained

by adjusted the hydrogen reduction temperature and time.

Materials characterizations

Powder XRD data were acquired with a RigakuD/MAX 2550 diffractometer with Cu Ka radiation (l=1.5413). SEM measurements were performed with a XL30 ESEM FEG microscope at an accelerating voltage of 20 kV. TEM measurements were made with a Hitachi H-8100 electron microscope (Hitachi, Tokyo, Japan) with an accelerating voltage of 200 kV. XPS measurements were performed with an ESCALABMK II X-ray photoelectron spectrometer by using Mg as the exciting source. The BET surface area was measured on a Quantachrome NOVA 1000 system at liquid N₂ temperature.

Electrochemical measurements

All electrochemical measurements were performed with a CHI660E electrochemical analyzer (CH Instruments, Inc., Shanghai) at room temperature. MoNi/CoMoO₃/NF was directly used as the working electrode, a saturated calomel electrode (SCE) as the reference electrode, and graphite rod as the counter electrode. In this study, E(RHE) E(SCE) + 0.242V + 0.059pH. Pt/C ink was prepared by dispersing 5 mg of Pt/C in 495 µL of ethanol 500µL deionized waterwith and 5 µL of 5 wt % Nafion solution, then the catalyst ink was loaded onto Ni foam surface and air-dried at room temperature (mass loading: 1 mg cm⁻²). The ohmic potential drop losses that arise from the solution resistance have been corrected by *iR* compensation. Tafel plots of the overpotential *vs*. log (j) are recorded with the linear portions at low overpotential

fitted to the Tafel equation ($\eta = a + b \log j$, where η is the overpotential, j is the cathodic current density, and b is the Tafel slope). The stability test of the MoNi/CoMoO₃/NF was also performed using a typical three electrodes system. The capacitances of the double layer (C_{dl}) at the solid-liquid interface of materials were measured by CVs collecting between 0.15 V and 0.35 V *vs* RHE in 1.0 M KOH, where the current response should be only due to the charging of the double layer.

Calculation Method

First-principle calculations were performed by the density functional theory (DFT) using the Vienna Ab-initio Simulation Package (VASP) package. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional were used to describe the electronic exchange and correlation effects. Uniform G-centered k-points meshes with a resolution of 2π *0.03 Å⁻¹ and Methfessel-Paxton electronic smearing were adopted for the integration in the Brillouin zone for geometric optimization. The simulation was run with a cutoff energy of 550 eV throughout the computations. These settings ensure convergence of the total energies to within 1 meV per atom. Structure relaxation proceeded until all forces on atoms were less than 1 meV Å⁻¹ and the total stress tensor was within 0.01 GPa of the target value.

Fig. S1 XRD pattern of the NiMoO₄-MoO₃-CoMoO₄ precursor.

Fig. S2 The a)TEM image and b) corresponding EDX spectrum of the MoNi nanoparticles which obtained from the area marked with red rectangle.

Peak Fitting Results

Integrated	
Intensity	Uncertainty
891.434	300.598
571.634	302.157
606.657	219.009
676.818	231.868
	Integrated Intensity 891.434 571.634 606.657 676.818

Input FWHM = 134 eV @ 5.9 keV Measured FWHM = 137.154 eV @ 5.9 keV Calibration: 10.0044 eV/ch, -11.8651 eV at channel 0 Accelerating voltage: 187 kV Alpha tilt: 15 degrees

Quantification Results

Correction method: None

Element	Weight	% Atomic %	Uncert. %	Detector Correction	k-Factor
Ni(K)	33.61	45.28	1.01	0.99	1.521
Mo(K)	66.39	54.72	2.15	0.99	4.417

Fig. S3 a) Nitrogen adsorption-desorption isotherm of MoNi/CoMoO₃/NF and b) the corresponding pore size distributions.

Fig. S4 a) Nitrogen adsorption-desorption isotherm of NiMoO₄-MoO₃-CoMoO₄/NF and b) the corresponding pore size distribution.

Fig. S5 SEM image of MoNi/CoMoO₃. It can be seen clearly that lots of pores are

distributed on the CoMoO₃ cuboid.

Fig. S6 XRD patterns of the electrocatalysts when $NiMoO_4$ -MoO₃-CoMoO₄/NF was calcined for different temperature in H₂/Ar atmosphere.

Fig. S7 SEM images of the electrocatalysts when NiMoO₄-MoO₃-CoMoO₄/NF cuboids are calcined for different temperature in H₂/Ar atmosphere: a-b) 400 °C; c-d) 500 °C; e-f) 600 °C.

Fig. S8 XRD patterns of the MoNi/CoMoO₃ when NiMoO₄-MoO₃-CoMoO₄/NF was calcined for different lengths of time at 500 °C in H_2 /Ar atmosphere.

Fig. S9 SEM images of the MoNi/CoMoO₃/NF cuboids when NiMoO₄-MoO₃-CoMoO₄/NF cuboids are calcined for different time at 500 °C in a H_2 /Ar atmosphere: a-b) 1 h; c-d) 2 h; e-f) 3 h.

Fig. S10 STEM image of a MoNi/CoMoO₃ cuboid.

Fig. S11 The XPS spectra of MoNi/CoMoO₃ (black) and NiMoO₄-MoO₃-CoMoO₄ (blue) in O 1s.

Fig. S12 LSV curves of the products when NiMoO₄-MoO₃-CoMoO₄/NF cuboids are calcined for 400, 500 and 600 °C in H_2 /Ar atmosphere.

Fig. S13 LSV curves of the products when NiMoO₄-MoO₃-CoMoO₄/NF cuboids are calcined for 1, 2 and 3 h at 500 °C in a H_2 /Ar atmosphere.

Fig. S14 The exchange current densities of the catalysts.

Fig. S15 CV curves for MoNi/CoMoO₃/NF recorded between -0.2 V and 0.6 V vs. RHE in 1.0 M PBS (pH=7) at a scan rate of 50 mV s⁻¹.

Since the difficulty in attributing the observed peaks to a given redox couple, the number of active sites should be proportional to the integrated charge over the CV curve. Assuming a one-electron process for both reduction and oxidation, the upper limit of active sites (n) for MoNi/CoMoO₃/NF could be calculated according to the follow equation:

N=Q/2F

where F and Q are the Faraday constant and the whole charge of CV curve, respectively.

Fig. S16 The calculated TOF of MoNi/CoMoO₃/NF.

Assuming that all of active sites were entirely accessible to the electrolyte, the TOF values were calculated and plotted against the potential. The following formula was used to calculate TOF:

where *F* and *n* are the Faraday constant and the number of active sites, respectively; *I* is the current density of LSV curve.

Fig. S17 a-b) SEM images of MoNi/CoMoO₃/NF after long-time stability test.

Fig. S18 XRD patterns of MoNi/CoMoO₃ before and after long-term stability tests.

Fig. S19 The XPS spectra of MoNi/CoMoO₃ in a) Ni 2p, b) Co 2p, c) Mo 3d and d) O 1s after long-term stability test.

Fig. S20 CVs for a) MoNi/CoMoO₃/NF, b) NiMoO₄-MoO₃-CoMoO₄/NF and c) NF.

Fig. S21 SEM images MoNi/CoMoO₃/NF after thermal oxidation.

The MoNi/CoMoO₃/NF is exposed to air and oxidized at 300 °C for 2 h.

Fig. S22 XRD pattern of MoNi/CoMoO₃/NF after thermal oxidation.

Fig. S23 XPS spectra of MoNi/CoMoO₃ (black) and the product of MoNi/CoMoO₃ after thermal oxidation (blue). High-resolution XPS signals in a) Ni 2p, b) Co 2p, c) Mo 3d and d) O 1s.

Fig. S24 LSV curves of MoNi/CoMoO₃/NF for HER before and after thermal

oxidation.

Fig. S25 XRD patterns of the NiMoO₄-MoO₃-CoMoO₄/NF precursor (red) and the product of NiMoO₄-MoO₃-CoMoO₄/NF calcined for 2 h at 500 °C in Ar atmosphere (black).

Fig. S26 SEM images of the product when $NiMoO_4$ -MoO₃-CoMoO₄/NF was calcined for 2 h at 500 °C in Ar atmosphere.

Fig. S27 XPS spectra of MoNi/CoMoO₃ (black) and the product of NiMoO₄-MoO₃-CoMoO₄ after annealed in Ar atmosphere (blue). High-resolution XPS signals in a) Ni 2p, b) Co 2p, c) Mo 3d and d) O 1s.

Fig. S28 LSV curves of MoNi/CoMoO₃/NF (black) and sample calcined for 2 h at 500 $^{\circ}$ C in an Ar atmosphere (red).

Name	Peak	FWHM	Area (P)	Atomic %	Q
	(BE)	(eV)	CPS.eV		
Ni 2p	855.52	1.83	3367.9	2.64	1
Co 2p	780.66	2.88	7824.33	6.96	1
Mo 3d	230.2	1.68	6636.65	9.15	1
O 1s	530.6	2	24108.6	81.25	1

 $\label{eq:table_state} Table \ S1 \ The \ surface \ compositions \ of \ MoNi/CoMoO_3.$

Electrocatalysts	Electrolyte	Overpotential (mV)	Tafel solp	TOF	Ref.
		at 10 mA/cm ²	(mV dec ⁻¹)	(S ⁻¹)	
MoNi/CoMoO ₃ /NF	1 M KOH	18	35	0.56	This work
				(100 mV)	
CoMoP@C	1 М КОН	81	55.5	N/A	Energy Environ. Sci. 2017, 10, 788
NiCo ₂ P _x	1 M KOH	58	34.3	0.056	<i>Adv. Mater.</i> 2017 , <i>29</i> , 1605502
				(100 mV)	
Ni–MoO ₂ -450	1 M KOH	40	30	N/A	J. Mater. Chem. A
NWs/CC					2017 , <i>5</i> , 24453–24461
NC/NiMo/NiMoO _x	1 M KOH	29	46	N/A	Small
					2017 , <i>13</i> , 1702018
Zn-doped MoS ₂	0.5 M	Onset Potential	51	~6	J. Am. Chem. Soc.
	H_2SO_4	(130 mV)		(200 mV)	2017 , <i>139</i> , 15479
Ni ₃ S ₂ @NPC	1 M KOH	60.8	67.5	N/A	Nano Energy 2017 , 36, 85
Zn _{0.3} Co _{2.7} S ₄ polyhedra	1 M KOH	100	48	N/A	J. Am. Chem. Soc.
					2016 , <i>138</i> , 1359-1365
Ni-Mo nanopowders	1 M KOH	90	N/A	N/A	ACS Catal.
					2013 , <i>3</i> , 166-169.
Co/Co ₃ O ₄	1 М КОН	90	44	N/A	Nano Lett.

Table S2 Comparison of HER performances for MoNi/CoMoO₃/NF with otherselected electrocatalysts.

					2015, 15 , 6015–6021
MoS ₂ /Ni ₃ S ₂	1 M KOH	110	83	N/A	Angew. Chem. Int. Ed.
					2016 , <i>55</i> , 6702–6707.
Co ₉ S ₈ –Ni _x S _y /NiF	1 M KOH	163	88	N/A	J. Mater. Chem. A 2016 , 4, 9744
Fe _{0.54} Co _{0.46} S _{0.92} /CN Ts/CC	1 М КОН	70	55	N/A	ACS Energy Lett.
					2017 , <i>2</i> , 2778–2785
TiO ₂ NDs/Co	1 M KOH	108	62	~28	Angew. Chem. Int. Ed.
NSNTs-CFs				(100 mV)	2017 , <i>56</i> , 2960 –2964
NiCo ₂ O ₄ hollow	1 M KOH	110	49.7	N/A	Angew. Chem. Int. Ed.
microcuboids					2016 , <i>55</i> , 6290 –6294
CP/CTs/Co-S	1 M KOH	190	131	0.12	ACS Nano
				(250 mV)	2016 , <i>10</i> , 2342–2348
Co ₉ S ₈ @MoS ₂ /NFs	1 M KOH	190	110	N/A	Adv. Mater.
					2015 , <i>27</i> , 4752–4759
N-Ni ₃ S ₂ /NF	1 M KOH	110	N/A	N/A	Adv. Mater.
					2017 , <i>29</i> , 701584
NiFe/NiCo ₂ O ₄ /NF	1 M KOH	105	88	N/A	Adv. Funct. Mater.
					2016 , <i>26</i> , 3515–3523
Ni/Mo ₂ C-PC	1 М КОН	179	101	N/A	Chem. Sci.
					2017, 8, 968–973
NiMo ₃ S ₄	0.1 M KOH	257	98	N/A	Angew. Chem. Int. Ed.
					2016 , <i>55</i> , 15240

Ni-C-N	1 М КОН	30.8	40	8.52	J. Am. Chem. Soc.
				(200 mV)	2016 , <i>138</i> , 14546
Mo ₂ C nanotubes	0.1 M KOH	112	55	N/A	Angew. Chem. Int. Ed.
					2015 , <i>54</i> , 15395
N,P-doped Mo2C@carbon	1 М КОН	50	71	3.71× 10 ⁻³ (10 mV)	ACS Nano
nanospheres					2016 , <i>10</i> , 8545
Mo ₂ C/carbon/graph ene	0.5 M	34	34	N/A	Nat. Commun.
	H_2SO_4				2016 , <i>7</i> , 11204-11211
Mo _x C/Ni@N- doped carbon	1 M KOH	126	N/A	N/A	J. Am. Chem. Soc.
					2015, 137, 15753
Pt ₃ Ni ₂ NWs-S/C	1 M KOH	70 (7.2 mA cm ⁻²)	N/A	N/A	Nat. Commun.
					2017 , <i>8</i> , 14580
Pt ₃ Ni ₃ nanowires	1 M KOH	50	N/A	N/A	Angew. Chem.
					2016 , <i>128</i> , 13051
Pt anowires/single layer Ni(OH) ₂	1 M KOH	98 (5 mA cm ⁻²)	N/A	N/A	Nat. Commun.
nanosheets					2015 , <i>6</i> , 6430-6437